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Executive Summary

SCEL (Service Component Ensemble Language) is a new language specifically designed to program
autonomic components and their interaction, while supporting formal reasoning on their behaviors.
SCEL brings together various programming abstractions that allow one to directly represent behav-
iors, knowledge and aggregations according to specific policies. Given that the syntax of the be-
havioural language is by now stable, during the third year we have concentrated our efforts on other
aspects. We have thus defined a language for specifying policies used to control actions and interac-
tions. We have also developed an integration of the behavioural language with external reasoners that
are used to support processes in taking their decisions to adapt to changing environments. In addition
to this, we have developed MISSCEL, a prototype implementation of SCEL in MAUDE that permits
to exploit the rich MAUDE framework to reason on SCEL specifications, and that can be easily in-
tegrated with reasoners written by using the same formalism. Moreover, we have continued with the
implementation of the language by enriching jRESP, the Runtime Environment for SCEL programs,
with new interaction patterns; and have defined new interfaces to permit the integration of jRESP
with different reasoners. All activities of WP1 have used as testbeds many scenarios taken from the
three case studies investigated in WP7 and in the other WPs.
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1 Introduction

In this deliverable we present some linguistic supports for modeling and programming service compo-
nents and their ensembles, their interactions, their sensitivity and adaptivity to the environment. More
specifically, we introduce a dialect of SCEL [DFLP12, DLPT13], named SCELTS , defined by spec-
ifying knowledge repositories as multiple distributed tuple-spaces (à la KLAIM [DFP98]). We will
illustrate the main features of SCELTS in a step-by-step fashion using the running example from the
automotive domain. We refer the interested reader to the technical report [DLPT13] for a full account
of the language’s semantics; this report is a working document that describes in full detail the updated
version of the language we are considering.

Apart for providing the specific dialect of SCEL based on tuple spaces we also present SACPL
(SCEL Access Control Policy Language), a simple, yet expressive, language for defining access con-
trol policies and access requests, and its integration with SCEL. SACPL is inspired by, but simpler
and less expressive than, the OASIS standard for policy-based access control XACML [OAS12]. In
this report we only sketch the main ingredients, and refer the interested reader to [DLPT13] for a full
account of the language.

The solid semantics foundations of SCEL has laid the basis for formal reasoning. MISSCEL,
a MAUDE Interpreter and Simulator for SCEL, is an executable operational semantics of SCEL that
can be fed to the rich MAUDE toolset [CDE+07] to analyze SCEL programs by performing: state-
space generation, qualitative analysis via MAUDE’s invariant and LTL model checkers, debugging via
probabilistic simulations and animations generation, statistical quantitative analysis.

Together with the MAUDE interpreter for SCELTS , that would be useful for rapid prototyping, we
have also continued working on the actual implementation of our language. It is based on jRESP, the
Java runtime environment providing an API that permits using in Java programs the SCEL’s linguistic
constructs for controlling the computation and interaction of autonomic components, and for defining
the architecture of systems and ensembles. To adapt to the alternative instantiations of key notions
such as knowledge representation or policies, that SCEL permits, jRESP relies extensively on the
use of design patterns.

SCEL is sufficiently powerful for dealing with coordination and interaction issues. However it
does not provide explicit machineries for specifying components that take decisions about the action
to perform basing on their context, or of a partial perception of it. Obviously, the language could
be extended in order to encompass such possibilities, but we preferred to have separate reasoning
components that SCEL programs can invoke when decisions have to be taken. We have recently
started investigation in this direction by studying how MISSCEL could be integrated with reasoners
specifically built for the systems under consideration. Moreover, we have developed a methodology
that is not restricted to a particular reasoner but would allow us to take advantage of many reasoners
at the same time, each performing particular reasoning tasks for which it is best suited.

In the next subsection we shall present the scenario that will be used to illustrate the main features
of SCEL and of the policy language and to describe how the two implementations of SCELTS based
on MAUDE and Java can be exploited to execute program and to interact with external reasoners.

An Automotive Scenario

Throughout this deliverable we shall use a running example, drawn from the Automotive Case Study
described in Deliverable D7.2, to illustrate the main achievements of WP1 during the third year.

We consider a scenario where e-vehicle users have to perform multiple activities throughout a
day, which take place at different physical locations (called Points Of Interest, POIs). In particular,
the scenario features a connected mobility environment of smart car parks (possibly equipped with
charging stations) and intelligent e-vehicles, which can monitor their states, reason and adapt in order
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to reach their goals. By exploiting the connected mobility environment, planning battery recharging
and locating available parking lots close to the POIs to visit is transparent to drivers that only take
care of the sequences of activities they want to perform. It is assumed that POI lists are computed
before starting the journey, by aiming at optimizing time and cost of the travel. Different policies can
be applied by drivers during the journey for regulating parking lots selection. Similarly, car parks rely
on specific policies for regulating cars admission.

Relations with other WPs

SCELTS is the result of discussion and interaction carried out last year with many other researchers
involved in the project. Several collaborations have started regarding issues considered in other work
packages. They can be summarized as follows:

• One of the collaborations with WP2 is mainly focused on the investigation of adaptation mech-
anisms and their realization in SCEL. First, the control-data [BCG+12a] approach is being
developed in parallel with the development of SCEL. Both lines of research are enriching each
other, in particular in what regards the identification of suitable adaptation mechanisms for
ensembles (e.g. based on policies or reflection). Second, the proof-of-concept carried out
in [BCG+12b] where Maude was used to validate the suitability of certain architectural pat-
terns and linguistic mechanisms for ensembles, has been fundamental in the development of
MISSCEL [BDVW]. Another collaboration strand (see Deliverable D2.3) is focussed on the
use of soft constraint paradigm as a specification technique that encompasses flexible knowl-
edge representation and reasoning (declarative aspects) with knowledge manipulation primitive
(procedural aspects). The integration of soft-constraint techniques in SCEL is still under devel-
opment.

• The collaborations with WP3 has intensified with the aim of investigating the possibility of
integrating KnowLang with SCEL. We have actually worked on the integration of simpler
reasoners with SCELTS [BDVW]. As soon as the prototype implementation of KnowLang is
available we shall proceed with its integration that will have to rely on an intelligent cooperation
between procedural and declarative aspects of system behavior. SCEL provides the procedural
components and is instead parametric wrt the declarative ones; the integration will have to
exploit the correspondence between the KnowLang operators ASK and TELL and the SCELTS
actions for retrieving information from shared knowledge repositories (qry) and for adding
information to them (put).

• The cooperation with WP4 has continued and we have shown how some of the component- and
ensemble-level adaptation patterns proposed in the literature and/or developed within WP4 can
be rendered in SCEL (see Deliverable D4.3, Section 4, and [CNP+13]). Specifically, we have
defined a compositional approach: each adaptation pattern is rendered as the (parallel) compo-
sition of the SCEL terms corresponding to the involved primitive components (and, possibly,
to their environment). The SCEL terms corresponding to the patterns only differ from each
other for the definition of the predicates identifying the targets of attribute-based communica-
tion. This enables autonomic ensembles to dynamically change the pattern in use by simply
updating components’ predicate definitions.

• In the context of WP5, we moved our first steps in providing SCEL with formal reasoning tech-
niques and tools by implementing MISSCEL. In fact, the implementation of a SCEL interpreter
in MAUDE allowed us to exploit its reach toolset to perform qualitative and quantitative analysis
of SCEL specifications. For example, in [BDVW] and in the Section 2 of Deliverable JD3.1 we
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discuss the statistical model checking of a SCEL specification regarding robots moving in an
arena. Another line of research that we are pursuing in the context of WP5 consists in defining
a translation from SCEL to Promela, which enables the analysis of systems specified in SCEL
by means of the SPIN model checker[Hol04]. This should also serve as a guideline for a SCEL
to BIP translation, which could be investigated in collaboration with WP5.

• The cooperation with WP6 has continued with the development of a new version of jRESP:
a runtime environment providing an API for programming in Java autonomic and adaptive ap-
plications based on the SCEL paradigm. The new version of jRESP provides mechanisms for
handling group oriented communications via P2P protocols; for supporting the integration of
external reasoners; and for supporting monitoring of SCEL component. Other features, such as
a library supporting specification and evaluation of policies and authorization requests, will be
integrated next year.

• All activities of WP1 have paid full attention to the case studies investigated in WP7. In partic-
ular, in this deliverable we use a scenario from the automotive case study as a running example
for illustrating the WP1 achievements of the third year. Concerning the cloud case study, we
have used SCEL and SACPL for modeling the high-load scenario (see Deliverable JD3.2, Sec-
tion 3.2.3, and [MKH+13]), and FACPL (an extension of SACPL) and its related tools for
implementing a policy-based manager of a cloud IaaS system (see Deliverable JD3.1, Section
7, and [MMPT13b]). Concerning the robotics case study, we have used SCEL and MISS-
CEL to model and analyze a collision avoidance scenario (see Deliverable JD3.1, Section 2,
and [BDVW]). SCEL and jRESP have been also used to model a rescue scenario (see De-
liverable JD3.2). Moreover, we have applied the SCEL models of adaptation patterns defined
in cooperation with WP4 to a robotic case study concerning object transportation (see Deliver-
able D4.3, Section 4.2, and [CNP+13]).

Structure of the Document

The rest of this document is organized as follows. In Section 2 we introduce SCELTS , i.e. the
tuple-based incarnation of SCEL. In Section 3 we present the policy description language SACPL.
In Section 4 we introduce MISSCEL, the SCELTS interpreter exploiting MAUDE and its rich tool
set. In Section 5 we present jRESP, the Java framework for providing implementations of the various
SCEL variants. In Section 6 we present the methodology we have developed to integrate procedural
descriptions of behavior with declarative reasoning. Finally, in Section 7 we draw some conclusions
and sketch the work plan for the final year of the project.

2 SCELTS: a SCEL dialect based on tuple-spaces

In this section, we present a dialect of SCEL [DFLP12, DLPT13], named SCELTS , defined by spec-
ifying knowledge repositories as multiple distributed tuple-spaces (à la KLAIM [DFP98]). We will
illustrate the main features of SCELTS in a step-by-step fashion using the running example from the
automotive domain described in the Introduction. We refer the interested reader to [DLPT13] for a
full account of the language’s semantics.

SCELTS syntax is presented in Table 1. Its basic category is the one defining PROCESSES that
are used to build up COMPONENTS that in turn are used to define SYSTEMS. PROCESSES specify the
flow of the ACTIONS that can be performed. ACTIONS can have a TARGET to determine the other
components that are involved in that action. KNOWLEDGE repositories are multisets of ITEMS, which
are sequences of values (i.e., tuples). TEMPLATES, instead, are sequences of values and variables.
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SYSTEMS: S ::= C
∣∣ S1 ‖ S2

∣∣ (νn)S

COMPONENTS: C ::= I[K,Π, P ]

PROCESSES: P ::= nil
∣∣ a.P

∣∣ P1 + P2

∣∣ P1[P2 ]
∣∣ X

∣∣ A(p̄)

ACTIONS: a ::= get(T )@c
∣∣ qry(T )@c

∣∣ put(t)@c
∣∣ fresh(n)

∣∣ new(I,K,Π, P )

TARGETS: c ::= n
∣∣ x

∣∣ self
∣∣ P

∣∣ p

KNOWLEDGE: K ::= 〈t〉
∣∣ K1 ‖ K2

ITEMS: t ::= e
∣∣ c

∣∣ P
∣∣ t1, t2

TEMPLATES: T ::= e
∣∣ c

∣∣ ?x
∣∣ ?X

∣∣ T1, T2

Table 1: SCELTS syntax (POLICIES Π are a parameter of the language, see Table 2 for an example)

Knowledge
(tuple-space)

K

Processes

P

I Interface

Π
Policies

Figure 1: SCELTS component

SCELTS is parametric with respect to POLICIES; a concrete example of a language for expressing
POLICIES is shown in Section 3.
Systems and components. SYSTEMS aggregate COMPONENTS through the composition operator
‖ . It is also possible to restrict the scope of a name, say n, by using the name restriction operator

(νn) . In a system of the form S1 ‖ (νn)S2, the effect of the operator is to make name n invisible
from within S1. A component I[K,Π, P ], graphically illustrated in Figure 1, consists of:

• An interface I publishing and making available structural and behavioral information about the
component itself in the form of attributes, i.e. names acting as references to information stored
in the component’s knowledge repository.

• A knowledge repository K managing application data, internal status data (supporting self-
awareness) and environmental data (supporting context-awareness). The knowledge repository
of a component stores also the information associated to its interface, which therefore can be
dynamically manipulated by means of the operations provided by the knowledge repositories’
handling mechanisms.

• A set of policies Π regulating the interaction between the different internal parts of the com-
ponent and the interaction of the component with the others. Access control policies provide a
standard example of policy abstractions; by exploiting them, components can protect themselves
against unauthorised access, hence behaving in a self-protecting way.

• A process P , together with a set of process definitions that can be dynamically activated. Some
of the processes in P execute local computations, while others may coordinate interaction with
the knowledge repository or perform adaptation and reconfiguration. Interaction is obtained by
allowing components to access knowledge in the repositories of other components.
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Running example (step 1/5). The automotive scenario can be expressed in SCELTS as a system S
defined as follows

S , Iev1[Kev1,Πev1, Pev1] ‖ . . . ‖ Ievn[Kevn,Πevn, Pevn]

‖ Ipark1[Kpark1,Πpark1, Ppark1] ‖ . . . ‖ Iparkm[Kparkm,Πparkm, Pparkm]

E-vehicles and parks are rendered as components that concurrently interact. The interfaces of such
components have the following forms:

Iev i , {(id, evi), (type, “e-vehicle”), (supply, “electrical”), (batteryLevel , li),
(walkingDist , di), (maxCostPerHour , ci), (riskClass, ri), . . .}

Iparkj , {(id, parkj), (type, “park”), (xpark, xj), (ypark, yj), (chargingStation, bj),
(costPerHour , cj), . . .}

Although attribute names specified in the interfaces are just pointers to the actual values contained
in the knowledge repository associated to the component, for the sake of presentation we denote
interfaces as collections of pairs (attributeName, attributeValue). An e-vehicle interface exposes
attributes concerning the vehicle (e.g., its kind of supply and charge level of the battery) and driver-
specified parameters (e.g., the maximum distance the driver is willing to walk between the POI to be
visited and a close parking lot, the maximum cost per hour that he/she is willing to pay for parking,
and the driver’s risk class of the insurance associated to the car). Similarly, a park interface specifies
features of the park (e.g., its position, the availability of charging station for e-vehicles, and the cost per
hour for parking). Notably, both interfaces expose the mandatory attribute id, which is bound to the
name of the component, and the attribute type, which identifies the component type (i. e., e-vehicle
or park ). �

Knowledge. A KNOWLEDGE repository K is a tuple-space, i.e. a (possibly empty) multiset of stored
tuples 〈t〉, composed by the operator ‖ . Values within tuples can either be targets c, or processes
P or, more generally, can result from the evaluation of some given expression e. We assume that ex-
pressions may contain attribute names, boolean, integer, float and string values and variables, together
with the corresponding standard operators. To pick a tuple out from a tuple-space by means of a given
template T , the pattern-matching mechanism is used: a tuple matches a template if they have the same
number of elements and corresponding elements have matching values or variables; variables match
any value of the same type (?x and ?X are used to bind variables to values and processes, respec-
tively), and two values match only if they are identical. If more tuples match a given template, one of
them is arbitrarily chosen.

Running example (step 2/5). Besides the data associated to the attributes exposed in the interface,
the knowledge repository Kev i of an e-vehicle contains information about the list of POIs to visit and
some coordination data. Specifically, the POIs list is rendered as a collection of tuples of the form
〈“poi”, j, xj , yj〉, indicating that the j-th POI to visit has coordinates (xj , yj). Notably, at runtime,
this list could be extended to include further POIs indicated by the driver, or automatically modified
by a re-planning process (e.g., to deal with varying traffic conditions). Moreover, to coordinate the
vehicle movements and the interactions with the driver, the following tuples are used:

〈“goTo”, x, y〉 〈“arrivedAt”, x, y〉 〈“searchNextPoi”〉

The first tuple indicates the coordinates of the current destination, which is a reserved parking lot close
to the POI that is going to be visited. The second tuple notifies that the vehicle is arrived at destination,
while the third one triggers the search of a parking lot close to the next POI.
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The knowledge repository Kpark j stores information about the availability of parking lots. In
particular, the tuple 〈“plot”, x, y, parkj〉 denotes an available parking lot with coordinates (x, y) and
also provides the identifier parkj of the park component. When the parking lot is booked, such tuple
is withdrawn from the repository, which corresponds to the acquisition of the lock associated to this
resource; then, when the parking lot is freed, the tuple is reinserted in the repository. �

Processes. PROCESSES are the active computational units. Each process is built up from the inert
process nil via action prefixing (a.P ), nondeterministic choice (P1 + P2), controlled composition
(P1[P2 ]), process variable (X), and parameterized process invocation (A(p̄)). In SCEL, the con-
struct P1[P2 ] abstracts the various forms of parallel composition commonly used in process calculi;
in SCELTS this construct is instantiated with a standard interleaving semantics, i.e. it is interpreted
as the interleaved parallel composition of the two involved processes. Process variables can support
higher-order communication, namely the capability to exchange (the code of) a process, and possibly
execute it, by first adding an item containing the process to a knowledge repository and then retriev-
ing/withdrawing this item while binding the process to a process variable. As shown in [GLPT12], this
form of higher-order communication enables a straightforward implementation of adaptive behaviors.
We assume that A ranges over a set of parameterized process identifiers that are used in recursive
process definitions. We also assume that each process identifier A has a single definition of the form
A(f̄) , P . In process invocation A(p̄) and definition A(f̄) , P , p̄ and f̄ denote lists of actual and
formal parameters, respectively.
Running example (step 3/5). The process Pev i running on the i-th e-vehicle, i.e. on the compo-
nent Iev i[Kev i,Πev i, Pev i], has the form ParkSearch(1 )[P ], meaning that the process identified by
ParkSearch is invoked (with actual parameter 1) and executed in parallel with process P (left unspec-
ified), denoting other processes run by the vehicle on-board system (e.g., processes dealing with driver
instructions). Process ParkSearch is defined as follows:

ParkSearch(j ) , a1 . a2 . · · · . an .ParkSearch(j + 1 )

where actions ak, with k ∈ {1..n}, are sequentially executed to search a park close to the j-th POI.
Once all such actions are completed, the process restarts (with an increased actual parameter). Notably,
for the sake of simplicity, this process does not permit to execute alternative behaviours in case of
such events as lack of available parking lots or requests for change of destination. Anyway, this
kind of expected events could be easily dealt with by introducing alternative actions by means of the
choice operator + . Adaptation to unexpected events, instead, could be instrumented by means
of the higher-order communication capability of the language, as already shown in Deliverable D1.1,
Section 9. �

Actions and targets. Processes can perform five different kinds of ACTIONS. Actions get(T )@c,
qry(T )@c and put(t)@c are used to manage shared knowledge repositories by withdrawing/retriev-
ing/adding information items (i.e., tuples) from/to the knowledge repository identified by c. Action
fresh(n) introduces a scope restriction for the name n so that this name is guaranteed to be fresh, i.e.
different from any other name previously used. Action new(I,K,Π, P ) creates a new component
I[K,Π, P ].

Actions get and qry may cause the process executing them to wait for the wanted tuple if it is not
(yet) available in the repository. The two actions differ for the fact that get removes the found tuple
from the knowledge repository while qry leaves the target repository unchanged. Actions put, fresh
and new are instead immediately executed (provided that their execution is allowed by the policies in
force).

Different entities may be used as the target c of an action. Component names are denoted by n, n′,
. . . , while variables for names are denoted by x, x′, . . . . The distinguished variable self can be used
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by processes to refer to the name of the component hosting them. The possible targets could, how-
ever, be also singled out via predicates expressed as boolean-valued expression obtained by logically
combining the evaluation of relations between attributes and expressions. Thus targets could also be
an explicit predicate P or the name p of a predicate that is exposed as an attribute of a component
interface whose value may dynamically change. We adopt the following conventions about attribute
names within predicates. If an attribute name occurs in a predicate without specifying (via prefix nota-
tion) the corresponding interface, it is assumed that this name refers to an attribute within the interface
of the object component (i.e., a component that is a target of the communication action). Instead, if
an attribute name occurring in a predicate is prefixed by the keyword this, then it is assumed that this
name refers to an attribute within the interface of the subject component (i.e., the component hosting
the process that performs the communication action).

In actions using a predicate P to indicate the target (directly or via p), predicates act as ‘guards’
specifying all components that may be affected by the execution of the action, i.e. a component must
satisfy P to be the target of the action. Thus, actions put(t)@n and put(t)@P give rise to two dif-
ferent primitive forms of communication: the former is a point-to-point communication, while the
latter is a sort of group-oriented communication. The set of components satisfying a given predicate
P used as the target of a communication action are considered as the ensemble with which the process
performing the action intends to interact. Indeed, our language does not have any specific syntactic
category or operator for forming them. For example, the names of the components that can be mem-
bers of an ensemble can be fixed via the predicate id ∈ {n,m, o}. When an action has this predicate
as target, it will act on all components named n, m or o, if any. Instead, to dynamically characterize
the members of an ensemble that are active and have a battery whose level is higher than low, by
assuming that attributes active and batteryLevel belong to the interface of any component willing to
be part of the ensemble, one can write active = “yes” ∧ batteryLevel > “low”.

Running example (step 4/5). By specifying actions ak, with k ∈ {1..n}, the definition of process
ParkSearch becomes

ParkSearch(j ) , get(“poi”, j, ?xpoi, ?ypoi)@self .
get(“plot”, ?xplot, ?yplot, ?park)@Pparks .
put(“goTo”, xplot, yplot)@self .
get(“searchNextPoi”)@self .
put(“plot”, xplot, yplot, park)@park .
ParkSearch(j + 1 )

where Pparks stands for predicate

type=“park”∧
√

(xpoi − xpark)2 + (ypoi − ypark)2 ≤ this.walkingDist

This process first retrieves (and consumes) an element of the POI list and binds the coordinates of the
current POI to variables xpoi and ypoi. Then, it interacts with the ensemble, identified by predicate
Pparks, of parks (attribute type) whose location (attributes (xpark, ypark)) is within a specified walk-
ing distance (attribute walkingDist) from the position of the considered POI (variables (xpoi, ypoi)).
Keyword this indicates that name walkingDist refers to an attribute specified in the interface of the
subject component, i.e. the e-vehicle; all other attributes refer to the object components, i.e. the parks.
In particular, the process performs a group-oriented get action that books a parking lot in one of the
parks belonging to the ensemble (by consuming the corresponding tuple and reading its content). If
there is no matching tuple, i.e. no parking lot is available within the specified walking distance from
the POI, the process is blocked; when such a tuple become available, the process resumes and locally
produces a goTo tuple with the parking lot’s coordinates and waits for the next search request (tuple
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POLICIES: Π ::= 〈Decision ; target:{ Targets } 〉
∣∣ Π p-o Π

∣∣ Π d-o Π

DECISIONS: Decision ::= permit
∣∣ deny

TARGETS: Targets ::= MatchF (Designator ,Expr)
| Targets or Targets

∣∣ Targets and Targets

MATCHING FUNC.: MatchF ::= equal
∣∣ pattern-match

∣∣ less-than
∣∣ . . .

DESIGNATORS: Designator ::= action
∣∣ item

∣∣ subject.attr
∣∣ object.attr

EXPRESSIONS: Expr ::= get
∣∣ qry

∣∣ put
∣∣ fresh

∣∣ new
∣∣ T

∣∣ value
| subject.attr

∣∣ object.attr
∣∣ not Expr

∣∣ Expr or Expr
| Expr and Expr

∣∣ Expr + Expr
∣∣ Expr × Expr

| Expr < Expr
∣∣ Expr = Expr

∣∣ . . .

Table 2: SACPL policy syntax

searchNextPoi ). Once the next search is triggered, the process reinserts the plot tuple in the park’s
repository (via a point-to-point put action), thus freeing the parking lot, and restarts. �

3 SACPL

In the previous section we have seen that SCELTS is parametric with respect to the language for
expressing policies. Such policies refine components behaviour for guaranteeing accomplishment
of specific tasks or satisfaction of specific properties (e.g., protection of private information, careful
management of resource usage, activation of adaptation procedures, etc.). As an example of policy
language for SCELTS , we consider here SACPL (SCEL Access Control Policy Language), a sim-
ple, yet expressive, language for defining access control policies. In this section, we briefly present
SACPL and focus on its integration with SCEL. We only sketch here the main ingredients and refer
the interested reader to [DLPT13] for a full account of the language.

Access control is a fundamental mechanism for restricting the operations users can perform on
protected resources. Many models of access control have been defined in the literature. SACPL fo-
cuses on the Policy Based Access Control (PBAC) model [NIS09], that is by now the de-facto standard
model for enforcing access control policies in service-oriented architectures. In this model, a request
to access a protected resource is evaluated with respect to one or more policies that define which re-
quests are authorized. An authorization decision is based on attribute values required to allow access
to a resource according to policies stored in system’s components. Component attributes are used
to describe the entities that must be considered for authorization purposes; they might concern: the
subject who is demanding access, the action that it is requested to be performed, the object impacted
by the action, and the environment identifying the context in which access is requested.

According to the PBAC model, SACPL policies are evaluated to decide if authorization requests
are granted or forbidden. A request can be thought of as a function mapping (attribute) names to
elements, and is generated from a label produced by the SCELTS operational semantics in corre-
spondence of a given action. For example, the request corresponding to the tentative of executing
action put(t)@n provides information about the attributes of the request’s subject, i.e. the component
performing the action, the attributes of the request’s object, i.e. the component identified by n, the ex-
changed item t and, of course, the type of the action, i.e. put. Each SCELTS action is executed only if
it is authorized by the policies in force at the component willing to perform the action and at the target
component(s). In particular, when the target of an action put denotes a set of repositories satisfying a
given target predicate, each insertion of the item in these repositories must be authorized separately by
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the policy in force at the corresponding component; such policy evaluation, however, does not affect
the authorization of the insertions in the other target repositories. Instead, in case of a group-oriented
action get or qry, only one authorization is required from the target side, since only one repository is
selected for the interaction. Thus, SACPL policies regulate (intra- or inter-components) interactions
by simply enabling or disabling behaviours; as discussed in Section 7, the possibility of adding new
actions to components’ behaviours as result of policies evaluation is left for future investigation.

SACPL syntax is presented in Table 2. Policies are hierarchically structured as trees. Indeed, a
policy is either an atomic policy or a pair of simpler policies combined through one of the decision-
combining operators p-o (permit override) and d-o (deny override). To match a composed policy
(Π1 p-o Π2), an authorization request is only required to match one of Π1 and Π2, while it must
match both Π1 and Π2, in order to match the policy (Π1 d-o Π2). An atomic policy is a pair consisting
of a decision and a target. The target defines the set of requests to which the policy applies. If the
target is empty, any request matches the policy. The decision — permit or deny — is the effect
returned when the policy is ‘applicable’, i.e. the request belongs to the target. Otherwise, i.e. when a
request does not belong to the policy’s target, then the policy is not-applicable (this is a third kind of
decision that can be returned by the semantics).

A target is either an atomic target or a pair of simpler targets combined using the standard
logic operators or and and. To match a composed target (Targets1 or Targets2), a request is
only required to match one of Targets1 and Targets2, while it must match both Targets1 and
Targets2, in order to match the target (Targets1 and Targets2). An atomic target is a triple de-
noting the application of a matching function to values from the request and the policy, like e.g.
less-than(subject.batteryLevel , 20%). To base an authorization decision on some characteristics of
the request, e.g. subjects’ or objects’ identity, atomic targets use designators (i.e. attribute names)
to point to specific values contained in the request. Specifically, the designator action refers to the
action to be performed (such as get, qry, put, etc.). E.g., a request matches an atomic target of the
form equal(action,put) if the request’s action corresponds to the action put identified by the target.
Similarly, item permits referring to the item exchanged in the considered interaction and, hence, an
atomic target of the form pattern-match(item,T ) is matched by all requests whose item matches the
template T . Designators subject.attr and object.attr refer to the specific attribute attr provided, re-
spectively, by the request’s subject or object (like, e.g., subject.batteryLevel or object.costPerHour ).
Finally, Expressions are built from values and attr ibutes through various operators. The evaluation
of an atomic target involving a subject (resp. object) designator consists in obtaining the subject (resp.
object) interface from the request, retrieving the value of the attribute from the interface, evaluating the
expression by possibly retrieving other attribute values from the request elements and, finally, calling
the corresponding match function.

Running example (step 5/5). In the automotive scenario, an e-vehicle component (with identifier evi)
could refine its behaviour by specifying Πevi as the SACPL policy resulting from the composition, by
means of the d-o (deny override) operator, of the following policies:

〈permit ; target:{ } 〉

〈deny ; target:{ equal(action,get) and
equal(subject.id,evi) and
pattern-match(item,(“plot”, , , )) and
less-than(subject.batteryLevel ,20%) and
equal(object.chargingStation,false) } 〉
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〈deny ; target:{ equal(action,get) and
equal(subject.id,evi) and
pattern-match(item,(“plot”, , , )) and
greater-than(object.costPerHour ,subject.maxCostPerHour) } 〉

The composed policy says that all actions are permitted apart for the withdrawal of plot tuples by evi
from an object park component that either has no charging station while the e-vehicle has a low battery
level or has a cost per hour greater than the maximum cost that the driver is willing to pay. For the
sake of readability, we use “ ” to denote a don’t care formal field in a template.

Similarly, a park component (with identifier parki) could regulate the access to its parking lot
tuples by specifying Πparki as the SACPL policy resulting from the composition, by means of the d-o
(deny override) operator, of the following policies:

〈permit ; target:{ } 〉

〈deny ; target:{ equal(action,get) and
equal(object.id,parki) and
pattern-match(item,(“plot”, , , )) and
equal(subject.supply ,“lpg”) } 〉

〈deny ; target:{ equal(action,get) and
equal(object.id,parki) and
pattern-match(item,(“plot”, , , )) and
equal(subject.riskClass,“high”) } 〉

This composed policy allows all actions except for the get actions on plot tuples performed by e-
vehicles whose power supply is LPG (such rule is typically applied by underground parks) or driver’s
class risk is high. �

4 MISSCEL

SCEL comes with solid semantics foundations laying the basis for formal reasoning. MISSCEL1,
a MAUDE Interpreter and Simulator for SCEL, is a first step in this direction. MISSCEL is an
implementation of SCEL’s operational semantics based on Rewriting Logic [Mes12], and it is written
in MAUDE [CDE+07], an instantiation of Rewriting Logic which permits to execute rewrite theories.
What we obtain is then an executable operational semantics for SCEL, that is an interpreter.

MISSCEL currently focuses on SCELTS , i.e., as described in Section 2, repositories are imple-
mented as multisets of tuples, while the processes of a SCEL component evolve in a pure interleaving
fashion. Access control policies are supported, even if no policy language has been integrated yet: as
default, every request is currently authorized.

Given a SCEL specification, thanks to MISSCEL it is possible to exploit the rich MAUDE

toolset [CDE+07] to perform:

• automatic state-space generation;

• qualitative analysis via MAUDE’s invariant and LTL model checkers;

• debugging via probabilistic simulations and animations generation;

• statistical quantitative analysis via the recently proposed MULTIVESTA [SV], a distributed sta-
tistical analyser extending VESTA and PVESTA [AM11, SVA05b].

1http://sysma.lab.imtlucca.it/tools/misscel/
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1 SC( I(tId(’SCId), tId(’batteryLevel), tId(’maxCostPerHour), tId(’riskClass), tId(’supply),
2 tId(’type), tId(’walkingDist)),
3 K(< tId(’SCId) ; av(id(’ev-1)) >, < tId(’batteryLevel) ; av("high") >,
4 < tId(’maxCostPerHour) ; av(2.0) >, < tId(’riskClass) ; av(10) >,
5 < tId(’supply) ; av("electrical") >, < tId(’type) ; av("e-vehicle") >,
6 < tId(’walkingDist) ; av(50.0) >, < av("pos") av(41.0) av(3.0) >,
7 < av("poi") av(1) av(2.0) av(3.0) >, < av("poi") av(2) av(8.0) av(10.0) >,
8 < av("poi") av(3) av(20.0) av(20.0) >),
9 Pi(INTERLEAVING-PROCESSES_AUTHORIZE-ALL),

10 P(get(< av("poi") av(1) ?x(’xpoi) ?x(’ypoi) >)@ self .
11 get(< av("plot") ?x(’xplot) ?x(’yplot) ?x(’park) >)@ Pparks(x(’xpoi), x(’ypoi)) .
12 put(< av("goto") x(’xplot) x(’yplot) >)@ self .
13 get(< av("searchNextPoi") >)@ self .
14 put(< av("plot") x(’xplot) x(’yplot) x(’park) >)@ x(’park) .
15 pDef(’ParkSearch, av(2)))
16 )

Listing 1: A MISSCEL component representing an e-vehicle

1 op Pparks : FormalOrActualValue FormalOrActualValue -> Predicate .
2 vars xpoi ypoi : ActualValue .
3 eq Pparks(xpoi,ypoi)
4 = remote. tId(’type) = av("park") AND
5 dist(xpoi,ypoi, remote. tId(’xpark), remote. tId(’ypark)) <= this. tId(’walkingDist) .

Listing 2: The Pparks predicate in MISSCEL

A further advantage of MISSCEL is that SCEL specifications can now be intertwined with
raw MAUDE code, exploiting its great expressiveness. This permits to obtain cleaner specifications
in which SCEL is used to model behaviours, aggregations, and knowledge manipulation, leaving
scenario-specific details like, e.g., e-vehicles movements or computation of distances to MAUDE. As
discussed, each e-vehicle and park of our scenario is modelled as a SCEL component. Listing 1 pro-
vides the MISSCEL representation of an e-vehicle, as described in the steps 1-4/5 of our running
example.

In MISSCEL, a SCEL component is defined as a MAUDE term with sort ServiceComponent
built with the operation op SC : Interface Knowledge Policies Processes ->
ServiceComponent. By implementation choice, in MISSCEL tuples may have an identifier
(e.g., < tId(’type) ; av("e-vehicle") > is a tuple with identifier type), but it is not
mandatory (e.g., < av("pos") av(41.0) av(3.0) > has no identifier). Note that, for imple-
mentation reasons, actual values (e.g. strings and integers) are enclosed in the operation av. Note
moreover that ’type is a MAUDE term with sort quoted identifier (similar to strings) built by prefix-
ing alphanumeric words with the operator “’”. However, only tuples with identifier can be exposed by
the interface, as identifiers are used as pointers to the actual values of the tuples stored in the knowl-
edge. Then, as depicted in lines 1-2 of Listing 1, an interface is just a set of tuple identifiers enclosed in
the MAUDE operation I, while, as depicted in lines 3-8, the knowledge is a multiset of tuples enclosed
in the operation K. For example, the described e-vehicle has id id(’ev-1), a battery level high
and type e-vehicle. Line 9 specifies that the default policy is enforced.

Lines 10-15 contain the behaviour specification of the e-vehicle, i.e., the process ParkSearch pre-
sented in the step 4/5 of our running example. Note the almost one-to-one correspondence between the
process specification given in our running example, and the one given in MISSCEL. SCEL variables
with type value are built with the MAUDE operations ?x (when binding) or x, having as parameter the
name of the variable (we also have the corresponding process variables ?X and X).

Predicates are defined as MAUDE operations with sort Predicate. As depicted in line 11 of
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1 eq [movementActuator] :
2 SC(I,K(< av("goto") av(xplot) av(yplot) >, < av("pos") av(xve) av(yve) > , k),Pi,P)
3 = SC(I,K(< av("searchNextPoi") > , < av("pos") av(xplot) av(yplot) >, k),Pi,P) .

Listing 3: The MAUDE equation to actuate e-vehicles movements

1 eq invoke(pDef(’ParkSearch, av(j)))
2 = get(< av("poi") av(j) ?x(’xpoi) ?x(’ypoi) >)@ self .
3 get(< av("plot") ?x(’xplot) ?x(’yplot) ?x(’park) >)@ Pparks(x(’xpoi), x(’ypoi)) .
4 put(< av("goto") x(’xplot) x(’yplot) >)@ self .
5 get(< av("searchNextPoi") >)@ self .
6 put(< av("plot") x(’xplot) x(’yplot) x(’park) >)@ x(’park) .
7 pDef(’ParkSearch, av(j + 1)) .

Listing 4: The definition of process ParkSearch in MISSCEL

Listing 1, we defined the predicate Pparks, corresponding to Pparks of the step 4/5 of our running
example. Clearly, we have to provide the predicate with two parameters, i.e., the coordinates of the POI
obtained in line 10. Listing 2 provides the specification of Pparks. In line 1 we define the MAUDE

operation Pparks with sort Predicate having as parameters two FormalOrActualValue
(i.e., either SCEL variables or actual values). Then, in lines 3-5 we provide the body of the pred-
icate in the form of a MAUDE equation. MAUDE equations are executed by the MAUDE engine to
rewrite occurrences of terms (in this case Pparks) matching the left-hand side (LHS) of the equation
(i.e., before the =) in the term specified in the right-hand side (RHS) of the equation (i.e., after the
=), in this case the body of the predicate. Given that at line 2 we specify the MAUDE variables (i.e.,
place-holders for any term with the same sort) xpoi and ypoi with sort ActualValue, we have
that only instantiated occurrences of Pparks (i.e., where all the SCEL variables have been replaced
by actual values) match with the LHS of the equation. Note that in predicates we follow the convention
of prefixing local tuple identifiers with the keyword this, while we use remote for those referring
to the target of the communication.

Line 5 of listing 2 provides an interesting example demonstrating the usefulness of mixing SCEL
and MAUDE specifications: dist is a MAUDE operation which computes the distance between a POI
and a park. In our simple case study, this actually correspond to the Euclidean distance. Noteworthy, in
case we would consider distances with different assumptions, e.g., considering public transportations,
it would be sufficient to change the MAUDE operations leaving unchanged the SCEL specification.

The MAUDE equation of Listing 3 provides another example in which we intertwine SCEL and
MAUDE specifications: the equation actuates the movement of an e-vehicle towards the booked park-
ing lot, making it instantaneous.2 Again, in case we would consider movements with different assump-
tions (e.g., time spent in the trip, possibly keeping into account traffic jams or spatial information), we
would just need to modify the equation.

Finally, it may be worth to note that line 15 of Listing 1 provides an hint on how MISSCEL
deals with process definitions. Intuitively, once all the preceding actions have been executed, the
process definition pDef(’ParkSearch, av(2)) is invoked, i.e., it is replaced with its body,
defined using the MAUDE equation of Listing 4 (where j is a MAUDE variable with the sort of natural
numbers), similarly to what described for predicates.

Coming to semantics-related aspects, the operational semantics of SCEL is defined in two steps:

2Note that this is a model-specific equation used to abstract from the movements of e-vehicles in SCEL. The equational
theory remains confluent, as in our example scenario there will never be more than a "goto" tuple per component. In the
general case one should add further equations that solve inconsistencies (e.g. apply the equation only when one "goto" is
present, and delete multiple "goto" according to a suitable resolution strategy).

ASCENS 16



D1.3: Third Report on WP1 (Final) November 8, 2013

1 op commit : Process -> Commitment .
2 rl commit(P) => commitment(inaction,P) .
3 rl commit(a . P) => commitment(a,P) .
4 crl commit(P + Q) => commitment(a, P1) if commit(P) => commitment(a, P1) .

Listing 5: The rules of Figure 2 implemented in MISSCEL

the semantics of processes, and the semantics of systems. First, the semantics of processes specifies
their commitments, ignoring the structure of SCEL components. Namely, issues like allocation of
processes to a component, available data in the knowledge, and regulating policies are ignored at this
level. Then, by taking process commitments and system configuration into account, the semantics of
systems provides a full description of systems behavior. The same happens in MISSCEL. For easiness
of presentation, we now exemplify the correspondence of SCEL semantics and its implementation in
MISSCEL for the semantics of processes only.

Figure 2 depicts four of the rules defining SCEL’s semantics of processes, specifying, respectively
from left to right, that: any process can commit in itself executing an inaction, a process composed by
P prefixed by an action a can commit in P by executing a, a process P +Q, in which P can commit
in P ′ executing an action, or Q can commit in Q′ executing another action, can commit either in P ′

or in Q′ executing the corresponding action.

Listing 5 depicts (omitting unnecessary details) how we implemented the rules of Figure 2 in
MISSCEL. Where P, Q and P1 are MAUDE variables with sort Process (i.e. place-holders for any
term with the specified sort), while a is an Action variable. The correspondence is straightforward.
Note that we need only one rule for the + operator, as we defined it with the comm axiom, meaning
that it has the commutative property, meaning the when applying a rule to P + Q, MAUDE will try to
match the rule also with Q + P.

Interestingly, in [BDVW] we exploited MISSCEL and the recently proposed MULTIVESTA
[SV] to perform a statistical quantitative analysis of a robotic collision avoidance scenario modelled
in SCEL. Note however that MISSCEL is an executable operational semantics for SCEL, and as
such, given a SCEL specification representing a system’s state (i.e. a set of SCEL components),
MISSCEL executes it by applying a rule of SCEL’s semantics to (part of) the state. According to
such semantics, a system evolves non-deterministically by executing the process of one of its compo-
nents, and in particular by consuming one of its actions. As usual (especially in the MAUDE context,
e.g., [BÖ12, BCG+12b, AMS06, EMA+12]), in order to perform statistical analysis, it is necessary to
obtain probabilistic behaviours out of non-deterministic ones by resolving non-determinism in prob-
abilistic choices. For this reason, we defined a Java wrapper for MISSCEL, together with a set of
external schedulers which allow to obtain probabilistic simulations of SCEL specifications, which
can then be exploited by MULTIVESTA to perform statistical analysis, like statistical model check-
ing [SVA05a]. More details are provided in [BDVW] and in the Section 2 of Deliverable JD3.1.

P ↓a P a.P ↓a P
P ↓α P ′

P + Q ↓α P ′
Q ↓α Q′

P + Q ↓α Q′

Figure 2: Four of the rules of SCEL’s semantics of processes.
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5 jRESP: A Java runtime environment for SCEL programs

In Section 2 and Section 3 we have shown how SCEL can be used to specify a significative case study.
This specification can then be analyzed via MISSCEL. This tool, presented in Section 4, implements
SCEL semantics in MAUDE and can be used to support qualitative and quantitative analysis of SCEL
programs.

The next step in the development process is the deployment. To perform this operation we need to
use a runtime environment supporting the execution SCEL programs. To execute SCEL programs, in
the ASCENS project two frameworks – jRESP and jDEECo – have been developed. Both frameworks
implements the concepts of SCEL in Java and have been presented in Deliverable D1.5.

In this section we recall some basic features of jRESP and we show how this framework can be
used to execute SCEL programs via Java programs. A detailed description of jRESP can be found
in [DLPT13] .

jRESP3 is a Java runtime environment providing a framework for developing autonomic and
adaptive systems according to the SCEL paradigm. Specifically, jRESP provides an API that per-
mits using in Java programs the SCEL’s linguistic constructs for controlling the computation and
interaction of autonomic components, and for defining the architecture of systems and ensembles.

The implementation of jRESP fully relies on the SCEL’s formal semantics. This close corre-
spondence enhances confidence on the behaviour of the jRESP implementation of SCEL programs,
once the latter have been analysed through formal methods made possible by the formal operational
semantics.

We have already explained in the previous sections that SCEL is parametric with respect to some
aspects, e.g. knowledge representation, that may change to tailor to different application domains.
For this reason, also jRESP is designed to accommodate alternative instantiations of the previously
mentioned features. Indeed, thanks to the large use of design patterns, the integration of new features
in jRESP is greatly simplified.

SCEL’s operational semantics abstracts from a specific communication infrastructure. A SCEL
program typically consists of a set of (possibly heterogeneous) components, each of which is equipped
with its own knowledge repository. These components concur and cooperate in a highly dynamic envi-
ronment to achieve a set of goals. In this kind of systems the underlying communication infrastructure
can change dynamically as the result of local component interactions. To cope with this dynamicity,
jRESP communication infrastructure has been designed to avoid centralized control. Moreover, to
facilitate interoperability with other tools and programming frameworks, jRESP relies on JSON4.
This is an open data interchange technology that permits simplifying the interactions between hetero-
geneous network components and provides the basis on which SCEL programs can cooperate with
external services or devices.

5.1 Automotive scenario in jRESP

We report here the code of the jRESP implementation of the SCEL specification, presented in
Section 2, of the automotive scenario. The Java classes reported in this section permit appreci-
ating how close the SCEL processes are to their implementation in jRESP. The complete source
code for the scenario, together with a simulation environment, can be downloaded from http:
//jresp.sourceforge.net/.

Process ParkSearch(j ) is rendered as the agent ParkSearch defined next:

3http://jresp.sourceforge.net/.
4http://www.json.org/.
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1 public class ParkSearch extends Agent {
2
3 private int j;
4 public ParkSearch( int j ) {
5 super("ParkSearch");
6 this.j = j;
7 }
8 protected void doRun() throws Exception {
9 Tuple t = query(new Template(new ActualTemplateField("poi"),

10 new ActualTemplateField(j),
11 new FormalTemplateField(Double.class),
12 new FormalTemplateField(Double.class)),
13 Self.SELF);
14 double xPoi = t.getElementAt(Double.class,2);
15 double yPoi = t.getElementAt(Double.class,3);
16 Tuple t2 = get(new Template(new ActualTemplateField("plot"),
17 new FormalTemplateField(Double.class),
18 new FormalTemplateField(Double.class),
19 new FormalTemplateField(Locality.class),
20 getPredicate( xPoi , yPoi ) );
21 double xplot = t2.getElementAt(Double.class,1);
22 double yplot = t2.getElementAt(Double.class,2);
23 Locality park = t2.getElementAt(Locality.class,3);
24 put( new Tuple(
25 "goTo" ,
26 xplot ,
27 yplot ,
28 ) , Self.SELF );
29 get( new Template( new ActualTemplateField("seachNextPoi") ) , Self.SELF );
30 put(new Tuple( "plot" , xplot , yplot , park ) , park );
31 ParkSearch next = new ParkSearch(j+1);
32 next.call();
33 }
34
35 public Group getPredicate( double x , double y ) {
36 return new Group(
37 new AndPredicate(
38 new HasValue( "type" , "park" ) ,
39 new LessThen(
40 new Distance(
41 new Value(x) ,
42 new Value(y) ,
43 new AttributeName("xpark") ,
44 new AttributeName("ypark")
45 ) ,
46 new Value( getValue(Double.class , "wakingDistance") )
47 )
48 )
49 );
50 }
51
52 }

When an instance of class Agent is executed, the method doRun() is invoked. This method defines
the agent behaviour. In the case of ParkSearch, it consists of sequence of actions implementing
the protocol for discovering the next available parking lot. The method query(), used to retrieve
data from a knowledge repository, is defined in the base class Agent and implements the SCEL’s
action qry. This method takes as parameters an instance of class Template and a target, and returns
a matching tuple. In the previous case, the target is the local component (referred by Self.SELF)
while the retrieved tuple is one consisting of four fields. The first two fields are the constant “poi”
and an integer j identifying the index of the searched point-of-interest. The last two fields are formal
fields and are used to retrieve the coordinates of the j-th point-of-interest in the route. The retrieved
values, both doubles, are stored in variables xpoi and ypoi. After that, method get is invoked. This
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method implements the SCEL’s action get and is used to book a parking lot from a parking located
at a walking distance from the position (xpoi, ypoi). This is a group oriented interaction. Indeed, to
book a parking lot a knowledge element is retrieved from one component among those satisfying the
requested predicate. jRESP relies on specific protocols guaranteeing the appropriate implementation
of this complex distributed interaction. A description of these protocols can be found in [DLPT13]
and in Deliverable D1.5.

To move towards the position of the reserved parking lots (stored in xplot and yplot) the method
put() is invoked. This implements action put and it is used to indicate that the car should move
towards location xpoi and ypoi. Finally, the agent waits until a tuple containing value seachNextPoi
is available in the local knowledge. When this tuple is retrieved, the parking lot is released and the
agent responsible of moving to the next poi (the one with index j + 1) is executed (via method call()).

6 Enriching SCEL components with reasoning capabilities

SCEL is sufficiently powerful for dealing with coordination and interaction issues. However it does
not provide explicit machineries for specifying components that take decisions about the action to
perform basing on their context, or on a partial perception of it. Obviously, the language could be
extended in order to encompass such possibilities, and one could have specific reasoning phases, or
dedicated SCEL components, triggered by the perception of changes in the context.

In our view, it is however preferable to have separate reasoning components specified in another
language, that SCEL programs can invoke when they need to take decisions. Having two different
languages for computation and coordination, and for reasoning, does guarantee separation of con-
cerns, a fundamental property to obtain reliable and maintainable specifications. As we will see, for
this reason we discarded the first obvious choice of using dedicated ordinary SCEL components that
take care of reasoning.

Also, it may be beneficial to have a methodology for integrating with a given programming lan-
guage different reasoners designed and optimised for specific purposes. What we envisage is having
SCEL programs that whenever have to take decisions have the possibility of invoking an external
reasoner by providing to it information about the relevant knowledge they have access to, and receiv-
ing in exchange informed suggestions about how to proceed. In a scenario like the e-vehicles one,
reasoners could be exploited by e-vehicles in order to react to unexpected events, like e.g., the failure
of the booking of a parking lot, traffic jams, or the unavailability of booked parking lots. Consider
for example the case of a failure of a booking of a parking lot, e.g., when no parking lots at walking
distance from the next POI are currently available. As discussed in the Introduction, we assume that
the lists of POIs are computed before starting the journey, by possibly optimizing time and cost of
the travel. However, in this case a dynamic replanning of such list may be useful rather than waiting
for the availability of a parking lot near to the considered POI. Intuitively, the list of remaining POIs
should be provided to a reasoner, which would shuffle it following some criteria, and would return the
obtained list to the SCEL component that required it.

In [BDVW] we started our investigation towards the actual integration of SCEL components and
reasoners. In particular, we provided a general methodology to enrich SCEL components with rea-
soning capabilities by resorting to explicit reasoner integrators, we instantiated the methodology for
MISSCEL, and we discussed the integration of MISSCEL with the PIRLO reasoner [Bel13]. This
permits to specify reasoning service component ensembles. The concrete integration has been indeed
simplified by the common underlying logical tools, as PIRLO is based on rewriting logic and MAUDE

as it is the case of MISSCEL. Nevertheless, the work in [BDVW] paves the way to the design of
interfaces and methodologies to be used for building up systems composed of separated components
concerned with computational aspects and decision making.
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Figure 3: Enriched SCEL component.

Noteworthy, the use of the MAUDE framework for the implementation of MISSCEL and PIRLO

paves the way towards the exploitation of tools and techniques for analysing the behaviour of reasoning
service component ensembles, allowing thus to reason on reasoning service component ensembles.
As an example, in [BDVW] we have shown how MULTIVESTA [SV], a recently proposed statistical
analyzer for probabilistic systems, can be used to evaluate the implementation of a simple collision
avoidance scenario consisting of a group of robots moving in an arena, where some of the robots
exploit PIRLO to choose the movements to be performed in order to reduce the number of collisions.

In the following we present our approach to enrich SCEL components with external reasoning
capabilities (Section 6.1), and we show how it has been instantiated for MISSCEL (Section 6.2).

6.1 Methodology

We aim at enriching SCEL components with an external reasoner to be invoked when necessary
(e.g., if a replanning of the list of POIs to be visited is necessary). Ideally, this should be done by
minimally extending SCEL. In Figure 1 we depicted the constituents of a SCEL component: in-
terfaces, policies, processes and repositories. Interfaces will not be involved in the extension, as
they only expose the local knowledge to other components. Moreover, we currently restrict our-
selves to not explicitly consider policies in the extension. Since processes store and retrieve tuples
in repositories, the interaction between a process and its local repository is a natural choice where
to plug-in a reasoner: we can use special data (reasoning request tuples) whose addition to the local
knowledge (i.e., via a put at self) triggers the reasoner. For example, assuming to have a rea-
soner offering the capability of replanning the list of POIs, an e-vehicle may require the help of the
reasoner in case no parking lots are currently available for the next POI by resorting to an action
like put(“reasoningRequest”, “replan”, remainingPOIs)@self, where remainingPOIs is the list
of POIs to be visited. Reasoning results can then be stored in the knowledge as reasoning result
tuples, allowing local processes to access them as any other data (e.g., via a get from self). For
example, the list of POIs generated by the reasoner can be accessed by resorting to an action like
get(“reasoningResult”, shuffledPOIs)@self, where shuffledPOIs is the list of POIs generated by
the reasoner.

We could have either passive reasoners invoked when necessary, or active ones that continuously
monitor the repositories, and act when necessary. We currently focus on the first type.

Figure 3 depicts such an enriched SCEL component, together with a generic external reasoner R.
With respect to Figure 1, now local communications are filtered by RI, a reasoner integrator.

As depicted by the grey arrow between RI and the external reasoner R, in case of reasoning re-
quests, RI invokes R, which evaluates the request and returns back the result of the reasoning phase. RI
then stores the obtained result in the knowledge, allowing the local processes to access it via common
get or qry actions. In case of normal data, the flow goes instead directly to the knowledge. Note that
in our methodology only local get of reasoning request tuples trigger a reasoner.
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Actually, RI has the further fundamental role of translating data among the internal representa-
tions used by SCEL and by the reasoner, acting hence as an adapter between them. For example, the
reasoner may use a different representation for the lists of POIs with respect to SCEL. To sum up, RI
performs three tasks: it first translates the parameters of the reasoning requests from SCEL’s represen-
tation to the reasoner’s one (scel2reasoner), then it invokes the reasoner (invokeReasoner), and finally
translates back the results (reasoner2scel). Clearly, each reasoner requires its own implementation of
the three operations. Hence, as depicted in Figure 4, we separate the RI component into an Abstract
Reasoning Interface and a Concrete Adapter. The former is given just once and contains the defini-
tion of the three operations, while the latter is reasoner- and domain-specific, and provides the actual
implementation of the three operations. In Section 6.2 we discuss the instantiation for MISSCEL of
the Abstract Reasoning Interface. The three operations implemented by a Concrete Adapter provide a
connection from SCEL to a particular reasoner taking care of the translation of syntactical represen-
tations and of the actual execution of the reasoning operation. An example of a concrete adapter is
presented in [BDVW] for the reasoner PIRLO in the context of a collision avoidance robotic scenario,
where each robot provides its perception of the surrounding environment to the reasoner, which then
computes the movement with minimal probability of colliding with other robots.

Note that the presented methodology is not restricted to a particular reasoner. Moreover, many
reasoners could be used at the same time, each performing particular reasoning tasks for which they
are best suited. To this end, particular reasoning services (like e.g., the replan one) can be requested
by a SCEL process according to the task at hand.

Finally, it may be worth to discuss the fact that, as mentioned before, we did not investigated yet the
role of policies in extending SCEL’s components with reasoning capabilities. However, they already
play an important role in our methodology, as they can manipulate the flow of data among processes
and local repositories, and thus can intercept, modify or generate reasoning requests and reasoning
results. Moreover, we can easily foresee a scenario in which complicated policies, possibly involving
reasoning tasks, resort to a reasoner as well following the proposed methodology. For example, in
case of a group get like, e.g., the second action of the process ParkSearch presented in the step 4/5
of our running example, which is used to select the next park, it may be useful to allow policies to
use reasoners in order to select the best tuple among the many matching ones present in a distributed
repository (e.g., the parks at walking distance from the current POI) according to some specific criteria
(e.g., the park reachable following the cheapest path).

6.2 Providing the Abstract Reasoning Interface in MISSCEL

We now discuss how we enriched MISSCEL to provide components with Abstract Reasoning Inter-
faces.

Listing 6 depicts the MISSCEL’s Abstract Reasoning Interface (omitting unnecessary details).
Lines 3-4 defines the reasoner-side sorts and variables for reasoning requests and results. Spe-

Figure 4: An architectural perspective of the reasoner integrator.
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1 mod ABSTRACT-REASONING-INTERFACE is
2 --- importings of modules are omitted
3 sorts RRequest RRequestParameters RResult RResultParameters .
4 var rReq : RRequest . var rRes : RResult .
5 var requestParameter resultParameter : List{ActualValue} . var t : Tuple .
6
7 op scel2reasoner : List{ActualValue} -> RRequestParameters .
8 op invokeReasoner : RRequest -> RResultParameters .
9 op reasoner2scel : RResult -> List{ActualValue} .

10
11 op invokeReasonerIfNecessary : Tuple -> Tuple .
12 ceq invokeReasonerIfNecessary(< tId(’reasoningRequest) ; requestParameter >)
13 = < tId(’reasoningResult) ; resultParameter >
14 if rReq := scel2reasoner(requestParameter)
15 /\ rRes := invokeReasoner(rReq)
16 /\ resultParameter := reasoner2scel(rRes) .
17 eq invokeReasonerIfNecessary(t) = t [ owise ] .
18 endm

Listing 6: The MISSCEL’s Abstract Reasoning Interface.

cific constructors to build terms with these sorts have to be provided by the Concrete Adapters.
Line 5 defines the variables used to match the SCEL-side parameters of the reasoning results and
requests (lists of actual values like e.g., integers, strings or more complex ones like data struc-
tures containing POIs information). Lines 7-9 define the three operations discussed in Section 6.1.
Note how scel2reasoner goes from SCEL-side to reasoner-side values, reasoner2scel
does the opposite, and invokeReasoner deals with reasoner-side values only. Lines 11-17 show
how our methodology is actuated: in case of a local put of a tuple t, we actually store the re-
sult of invokeReasonerIfNecessary(t). If t is a reasoning request tuple (i.e., has id
reasoningRequest, line 12), then its parameters are translated by scel2reasoner (line 14),
the reasoner is invoked (line 15), and the obtained result is translated back by reasoner2scel
(line 16). Note that the result is enclosed in a reasoning result tuple (line 13). Finally, if t is not
a reasoning request tuple, the equation of line 17 is applied (due to the owise clause standing for
otherwise), leaving it unchanged.

Intuitively, in order to integrate a reasoner in MISSCEL, it is necessary to provide a MAUDE

module specifying the body of the three operations scel2reasoner, reasoner2scel and
invokeReasoner via MAUDE equations. For example, in the example discussed in Section 6.1,
it would be necessary to translate lists of POIs between SCEL’s and reasoner’s representations (via,
respectively, scel2reasoner and reasoner2scel). And then invokeReasoner should in-
voke the replanning capability of the reasoner.

7 Concluding Remarks and Work Plan for Year Four

We have introduced a dialect of SCEL, a formalism that brings together various programming abstrac-
tions that permit directly representing knowledge, behaviors and aggregations according to specific
policies, and naturally programming interaction, adaptation and self- and context-awareness. The lan-
guage is parametric with respect to the Knowledge representation and handling mechanisms and with
respect to the policy language, used for controlling both actions execution and process interaction.
The dialect, that we call SCELTS , takes a precise standing with respect to knowledge representation
that is defined by specifying knowledge repositories as multiple distributed tuple spaces. We have then
introduced a specific language for specifying policies for access control and described how the two
formalisms can co-exist.
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Moreover, we have described MISSCEL, an interpreter for SCEL based on MAUDE that exploits
the solid semantics foundations of SCEL to lay the basis for formal reasoning on SCEL specifications
by resorting to the MAUDE toolset. After this we have described jRESP, the Java runtime environment
providing an API that permits using the SCEL’s linguistic constructs in Java programs. We have
concluded by discussing a possible strategy for integrating SCEL programs with external reasoners to
be invoked when specific decisions have to be taken.

All formalisms and methodologies have been presented by resorting to a simple scenario from the
automotive case study. During the fourth year we plan to do further work along the lines described
above.

SCEL at Work. We will assess the extent to which SCEL achieves its goals. As testbeds we will
continue using the different case studies considered in the project. This process might require further
tuning the language features and, hence, the related jRESP and MISSCEL implementations. Specific
attention will be dedicated to the integration of reasoners and SCEL programs.

New Policy Languages. We plan to integrate with SCEL a more flexible and expressive pol-
icy language, which is also closer to real-world policy languages. We are currently working on
FACPL [MMPT13a], a policy language featuring more structured policy specifications, additional
policy combining operators, and the possibility to associate actions that should be performed in con-
junction with the enforcement of an authorisation decision. FACPL can express access control poli-
cies as well as policies dealing with other systems’ aspects, as e.g. resource usage and adaptation.
Therefore, once integrated with SCEL, FACPL could be used to regulate interaction and adaptation
of components.

Programming support for policies. The development and the enforcement of FACPL policies will
be supported by practical software tools: an Integrated Development Environment (IDE), in the form
of an Eclipse plugin, and a Java implementation library. The policy designer can use the IDE for
writing the desired policies in FACPL syntax, by taking advantage of the supporting features provided,
e.g. code-completion and syntax checks. Then, the tool automatically produces a set of Java classes
implementing the FACPL code by using the specification classes defined in the FACPL library. The
library, given as input a set of Java-translated policies and the request to evaluate, also supplies the
request evaluation process according to the rules defining the language’s semantics.

Extensions of jRESP with FACPL. We plan to continue the validation of FACPL and its tools.
Moreover, we intend to integrate the FACPL evaluation environment within the jRESP runtime en-
vironment, thus enabling a full-evaluation of the policy layer when programming ensembles using
SCEL. Another research line we intend to pursue is the development of methods and techniques for
analysing FACPL policies. In particular, they will be first theoretically defined and, then, integrated
in our software tools in order to achieve a complete framework for developing trustworthy policies.

SCEL SDK. We intend to implement an integrated environment for supporting the development
of adaptive systems. For this reason we plan to define a high-level programming language (HL-
SCEL) that, by enriching SCEL with standard programming constructs (e.g. control flow con-
structs, such as while or if-then-else, structured data types,. . . ), simplifies the programming task.
The SCEL SDK will provide a compiler that starting from a HL-SCEL program generates jRESP
code. (Semi-)Automatic analysis tools, based on the SCEL’s formal semantics, will be also integrated
in the environment.
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Stochastic extensions of SCEL. We plan to define a timed/stochastic extension of SCEL where
time is explicitly considered and described by means of random variables. In particular, we plan to
study possible alternative stochastic semantics for group oriented operations. Indeed, different level
of abstractions can be considered: from concrete ones, where the underlying protocol governing the
component interactions is take into account, to abstract ones, where the underlying communication in-
frastructure is abstracted. We also plan to study the right modal logic to express quantitative properties
of SCEL systems.

Adding reasoning capabilities to SCEL. We want to continue developing the methodology that
enables SCEL components to take decisions about possible alternative behaviors by choosing among
the best possibilities while being aware of the consequences. We shall continue investigating the
integration of SCEL with “reasoners” to be invoked by processes when needing to face choices. Also,
it may be beneficial to have a methodology for using different reasoners or meta-reasoners designed
and optimised for specific purposes. Further, we plan to better investigate the integration between
reasoners and policies.
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