Software Engineering for Collective Autonomic Systems

The ASCENS Approach
A collective autonomic system consists of collaborating autonomic entities that are able to adapt at runtime, adjusting to the state of the environment and incorporating new knowledge into their behavior. These highly dynamic systems are also known as ensembles. To ensure the correct behavior of ensembles it is necessary to support their development through appropriate methods and tools that can guarantee an autonomic system lives up to its intended purpose; this includes respecting important constraints of the environment.

This book addresses the engineering of such systems by presenting the methods, tools, and theories developed within the ASCENS project. ASCENS\(^1\) was an integrated project funded in the period 2010–2015 by the 7th Framework Programme (FP7) of the European Commission as part of the Future Emerging Technologies Proactive Initiative (FET Proactive). The ASCENS Consortium consisted of 14 partners of seven countries and one third party, from which nine are universities, three research organizations, and three companies (two SMEs). The project was coordinated by the Ludwig-Maximilians-Universität München. ASCENS participated in the coordination actions AWARENESS\(^2\) and FOCAS\(^3\).

The ASCENS approach is both formal and pragmatic. Formal means that it provides a range of foundational theories and methods that support requirements engineering, modeling, programming, formal reasoning, validation and verification, monitoring and dynamic adaptation of autonomic systems. As a guide for performing these tasks, ASCENS has defined a process model for systems development called the Ensemble Development Life Cycle (EDLC). The EDLC takes both the design and runtime of an autonomic system into account, and includes mechanisms for enabling design changes based on the system’s and environmental awareness obtained during runtime.

The pragmatic nature of the ASCENS approach manifests itself in three case studies: autonomic robot swarms performing rescue operations, autonomic cloud computing platforms transforming numerous small computers into a supercomputing environment, and autonomic e-mobility support that addresses decision making in transportation systems.

This book is divided into four parts corresponding to the research areas of the project and their concrete applications: (I) language and verification for self-awareness and self-expression, (II) modeling and theory of self-aware and adaptive systems, (III) engineering techniques for collective autonomic systems, and, last but not least, (IV) challenges and feedback provided by the case studies of the project in the areas of swarm robotics, cloud computing, and e-mobility.

\(^1\) http://www.ascens-ist.eu/
\(^2\) http://www.aware-project.eu/
\(^3\) http://focas.eu/
Many people contributed to the success of the ASCENS project. We extend our sincere thanks to all of them. We are particularly grateful to the EC project officers Wide Hogenhout, Dagmar Floeck, and Dalibor Grgec. We thank the reviewers Richard Anthony, Jim Davies, Paola Inverardi, Fernando Orejas, Ralf Reussner, and Carles Sierra for their always constructive criticism and helpful suggestions. We are also grateful to Springer for the assistance in producing this book. Our sincere thanks go to all authors for the high quality of their scientific contributions and to the reviewers of the book chapters for their careful reading and suggestions for improvements. Finally, we thank all ASCENS members for the excellent work, their inexhaustible effort and never-ending enthusiasm for achieving the goals of the project and even going further in their research activities.

February 2015

Martin Wirsing
Matthias Hötzl
Nora Koch
Philip Mayer
Project Partners

Ludwig-Maximilians-Universität München, Germany
Università di Pisa, Italy
Università di Firenze, Italy
Fraunhofer Gesellschaft, Germany
Université Joseph Fourier Grenoble 1, Verimag Laboratory, France
Università di Modena e Reggio Emilia, Italy
Université Libre de Bruxelles, Belgium
Ecole Polytechnique Fédérale de Lausanne, Switzerland
Volkswagen AG, Germany
Zimory, Germany
University of Limerick, Ireland
IMT Lucca, Italy
Mobsya, Switzerland
Charles University, Czech Republic
Istituto di Scienza e Tecnologie della Informazione “A. Faedo”, Italy
Table of Contents

Part I: Language and Verification for Collective Autonomic Systems

1. Introduction ... 1

The SCEL Language: Design, Implementation, Verification 3

* Rocco De Nicola, Diego Latella, Alberto Lluch Lafuente, Michele Loreti, Andrea Margheri, Mieke Massink, Andrea Morichetta, Rosario Pugliese, Francesco Tiezzi, and Andrea Vandin

1. Introduction ... 3
2. The Parametric Language SCEL 6
3. Knowledge Management ... 21
4. A Policy Language .. 27
5. A Full-Fledged SCEL Instance 35
6. A Runtime Environment for SCEL 44
7. Quantitative Variants of SCEL 50
8. Verification ... 57
9. Concluding Remarks .. 67

Reconfigurable and Software-Defined Networks of Connectors and Components ... 73

* Roberto Bruni, Ugo Montanari, and Matteo Sammartino

1. Introduction ... 73
2. Software-Defined and Overlay Networks 74
3. Network Conscious π-Calculus (NCPi) 75
4. Formal Definition and Properties of the PASTRY Distributed Hash Table System ... 83
5. Networks of Connectors and Components 85
6. Connector Algebras for Petri Nets 87
7. From BI(P) to Petri Nets and Vice Versa 91
8. Reconfigurable and Dynamic BIP 94
9. Concluding Remarks .. 104

Correctness of Service Components and Service Component Ensembles ... 107

* Jacques Combaz, Saddek Bensalem, Francesco Tiezzi, Andrea Margheri, Rosario Pugliese, and Jan Kofroň

1. Introduction ... 107
2. Verification Techniques for BIP Models 109
3. Alternative Approaches to Ensure System Correctness 135
4. Conclusion ... 154
Part II: Modeling and Theory of Adaptive and Self-aware Systems

Introduction ... 161

Reconciling White-Box and Black-Box Perspectives on Behavioral Self-adaptation .. 163

Roberto Bruni, Andrea Corradini, Fabio Gadducci, Matthias Hörlz, Alberto Lucho Lafuente, Andrea Vandin, and Martin Wirsing

1 Introduction ... 163
2 A Robot Rescue Case Study ... 165
3 Black-Box and White-Box Adaptation 166
4 Reconciling Black-Box and White-Box Adaptation 173
5 Related Work .. 181
6 Conclusion ... 182

From Local to Global Knowledge and Back 185

Nicklas Hoch, Giacoma Valentina Monreale, Ugo Montanari, Matteo Sammartino, and Alain Tcheumam Siwe

1 Introduction ... 186
2 Constraints Programming ... 188
3 E-mobility Optimization Problems 192
4 Smart GRIDS for Renewable Electrical Power
 Production/Consumption ... 203
5 Conclusion and Future Work .. 217

Knowledge Representation for Adaptive and Self-aware Systems 221

Emil Vassev and Mike Hinchey

1 Introduction ... 221
2 KnowLang – Language for Knowledge Representation of Self-adaptive Systems ... 222
3 KnowLang Reasoner .. 234
4 Awareness in Software-Intensive Systems 237
5 Related Work .. 243
6 Conclusions ... 244

Reasoning and Learning for Awareness and Adaptation 249

Matthias Hörlz and Thomas Gabor

1 Introduction ... 249
2 Awareness and Self-expression .. 252
3 Extended Behavior Trees ... 257
4 Reinforcement Learning ... 268
5 Passing Knowledge to Other Components: Teacher-Student Learning ... 282
6 Related Work .. 285
7 Conclusions and Future Work ... 286
Table of Contents

XI

Supporting Performance Awareness in Autonomous Ensembles

$Lubomír Bulej, Tomáš Bureš, Ilias Gerostathopoulos, Vojtěch Horký, Jaroslav Kezník, Lukáš Marek, Max Tschakowski, Mirco Tribastone, and Petr Tuča

1 Introduction .. 291
2 Instrumentation for Performance Monitoring 293
3 Expressing Performance Properties 295
4 Coding for Performance Awareness 303
5 Modeling Performance ... 307
6 Performance Aware Ensembles 311
7 Designing Performance-Based Adaptation 315

Part III: Engineering Techniques for Collective Autonomic Systems

Introduction .. 323

The Ensemble Development Life Cycle and Best Practices for Collective Autonomic Systems 325

Matthias Hölz, Nora Koch, Mariachiara Puviani, Martin Wirsing, and Franco Zambonelli

1 Introduction .. 325
2 Software Development Life Cycle for Ensembles 327
3 Engineering Feedback Control Loops 328
4 A Pattern Language for Ensemble Development 339
5 Related Work .. 348
6 Conclusions .. 349

Methodological Guidelines for Engineering Self-organization and Emergence ... 355

Victor Noel and Franco Zambonelli

1 Introduction .. 355
2 Emergence, Engineering and Decomposition 357
3 Following the Problem Organisation 362
4 Engineering a Swarm of Bots 368
5 Related Works and Discussion 372
6 Conclusion .. 375

Engineering Requirements for Autonomy Features 379

Emil Vascev and Mike Hinchey

1 Introduction .. 379
2 ARE – Autonomy Requirements Engineering 380
3 Capturing Autonomy Requirements for Science Clouds 386
4 Related Work .. 398
5 Conclusions .. 400
Table of Contents

The Invariant Refinement Method .. 405
Tomáš Bureš, Ilias Gerostathopoulos, Petr Hnetynka,
Jaroslav Keznikl, Michal Kit, and Frantisek Plasil

1 Introduction ... 405
2 Running Example ... 406
3 The Need for a Tailored Design Method for ACEs 409
4 Invariant Refinement Method .. 411
5 IRM Abstraction Levels and Invariant Patterns 416
6 Conclusions .. 426

Tools for Ensemble Design and Runtime 429
Dhaminda B. Abeywickrama, Jacques Combaz, Vojtěch Horký,
Jaroslav Keznikl, Jan Kafroň, Alberto Lluch Lafuente,
Michele Loreti, Andrea Marigheri, Philip Mayer, Valentina Monreale,
Ugo Montanari, Carlo Pinciroti, Petr Tůma, Andrea Vandin, and
Emil Vassev

1 Introduction ... 429
2 Design Cycle Tools ... 431
3 Runtime Cycle Tools .. 440
4 Summary ... 444

Part IV: Case Studies: Challenges and Feedback

Introduction ... 449

The ASCENS Case Studies: Results and Common Aspects 451
Nikola Šerbedžija

1 Introduction ... 451
2 Application Challenges .. 454
3 Common Approach ... 458
4 Generic Set of Common Tools 461
5 Application Deployments ... 462
6 Conclusion .. 466

Adaptation and Awareness in Robot Ensembles: Scenarios and Algorithms 471
Carlo Pinciroti, Michael Bonani, Francesco Mondada, and
Marco Dorigo

1 Introduction ... 471
2 Scenario: Disaster Recovery ... 473
3 The Robotics Scenario and the EDLC 479
4 Implementation and Demonstration 482
5 Conclusions .. 492
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>495</td>
</tr>
<tr>
<td>2</td>
<td>Influencing Areas of Computing</td>
<td>496</td>
</tr>
<tr>
<td>3</td>
<td>Handling Awareness and Adaptation</td>
<td>498</td>
</tr>
<tr>
<td>4</td>
<td>Implementation</td>
<td>506</td>
</tr>
<tr>
<td>5</td>
<td>Evaluation and Demonstrator</td>
<td>508</td>
</tr>
<tr>
<td>6</td>
<td>Summary</td>
<td>510</td>
</tr>
</tbody>
</table>

The E-mobility Case Study
Nicklas Hoch, Henry-Paul Bensler, Dhaminda Abeywickrama, Tomáš Bureš, and Ugo Montanari

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>514</td>
</tr>
<tr>
<td>2</td>
<td>System Design</td>
<td>515</td>
</tr>
<tr>
<td>3</td>
<td>Goal-Oriented Requirements Engineering for Self-adaptive Autonomic Systems</td>
<td>519</td>
</tr>
<tr>
<td>4</td>
<td>Implementation and Deployment</td>
<td>526</td>
</tr>
<tr>
<td>5</td>
<td>Runtime Simulation</td>
<td>528</td>
</tr>
<tr>
<td>6</td>
<td>Summary</td>
<td>531</td>
</tr>
</tbody>
</table>

Author Index | 535 |