
www.ascens-ist.eu

ASCENS
Autonomic Service-Component Ensembles

D7.4: Fourth Report on WP7
Demonstrator Evaluation Report

Grant agreement number: 257414
Funding Scheme: FET Proactive
Project Type: Integrated Project
Latest version of Annex I: Version 3.0 (29.4.2014)

Lead contractor for deliverable: Fraunhofer
Author(s): Nikola Serbedzija (Fraunhofer), Carlo Pinciroli (ULB),
Michal Kit (CUNI), Tomas Bures (CUNI), Philip Mayer (LMU), José
Velasco (Zimory), Henry P. Bensler (VW)

Reporting Period: 4
Period covered: October 1, 2013 to March 31, 2015
Submission date: March 12, 2015
Revision: Final
Classification: PU

Project coordinator: Martin Wirsing (LMU)
Tel: +49 89 2180 9154
Fax: +49 89 2180 9175
E-mail: wirsing@lmu.de

Partners: LMU, UNIPI, UDF, Fraunhofer, UJF-Verimag, UNIMORE,
ULB, EPFL, VW, Zimory, UL, IMT, Mobsya, CUNI

D7.4: Fourth Report on WP7 (Final) March 12, 2015

Executive Summary

In the fourth and final project year, WP7 focused on demonstrators implantation and evaluation ac-
tivities. Continuing the work from the previous project years, where each of the three case studies
has been fully specified, modeled, integrated and simulated, the case study implementation and eval-
uation have been conducted. The swarm robotics, science cloud and e-mobility scenarios have been
separately programmed and deployed. The resulting systems represent a joint effort with other work
packages harmonizing the work done in previous development phases

According to the description of work (DoW) the following tasks have been accomplished: T7.1.4,
T7.2.4 and T7.3.4 (Implementation and Evaluation/Validation, for swarm robotics, science cloud and
e-mobility, respectivel) as well as the T7.2.5 (Performance-aware SCEs in science clouds). The work
in the fourth project year has been accomplished as planned for the WP7 work package and is reported
in this document. Through intense collaboration with other work packages the joint deleverables:
JD4.1 - Book on Autonomic Service-Component Ensembles, JD4.2 - ASCENS Tool Suite, JD4.3 -
ASCENS Brochure and JD5.1 - ASCENS User Guide have been fuinalised, marking the finalization
of the project.

ASCENS 2

D7.4: Fourth Report on WP7 (Final) March 12, 2015

Contents

1 Introduction 5
1.1 Work Organization . 5
1.2 Structure of the Report . 6

2 Swarm Robotics 8
2.1 Overview . 8
2.2 Major awareness/autonomic issues . 8
2.3 Implementation details . 9

2.3.1 Exploration . 9
2.3.2 Construction . 12

2.4 Evaluation and validation . 16
2.4.1 Requirement Engineering . 17
2.4.2 Modeling / Programming and Verificaton / Validation 18
2.4.3 Awareness and Adaptation . 19

2.5 Summary . 20

3 The Autonomic Cloud 21
3.1 Influencing Areas of Computing . 21

3.1.1 Cloud Computing . 22
3.1.2 Voluntary Computing . 22
3.1.3 Peer-to-Peer Computing . 22
3.1.4 Bringing it all together . 23

3.2 Handling awareness and adaptation . 23
3.2.1 Adaptation Patterns . 23
3.2.2 Modeling Ensemble Behavior . 25
3.2.3 System Specification in SCEL . 26
3.2.4 Supporting Mobile Nodes with jDEECo . 27
3.2.5 The EDLC and Other ASCENS methods 28

3.3 Implementation . 29
3.3.1 Implementing an Autonomic Cloud . 30
3.3.2 Integrating Zimory IaaS . 31

3.4 Evaluation and Validation . 33
3.5 Summary . 34

4 E-mobility 35
4.1 Overview . 35

4.1.1 e-Mobility Concept . 36
4.1.2 e-Mobility Development Life Cycle . 37

4.2 Major awareness/autonomic issues . 38
4.2.1 High-level Requirements Engineering with SOTA 38
4.2.2 Low-level Requirements Engineering with the Invariant Refinement Method 40
4.2.3 Combining SOTA and IRM . 41

4.3 Implementation details . 41
4.4 Evaluation and validation . 42

4.4.1 MATSim Transportation Modeling . 43
4.4.2 Integration of jDEECo and MATSim . 45

4.5 Summary . 45

ASCENS 3

D7.4: Fourth Report on WP7 (Final) March 12, 2015

5 Conclusions 47

ASCENS 4

D7.4: Fourth Report on WP7 (Final) March 12, 2015

1 Introduction

The major aim of the case study work package (WP7), as defined in the DoW, is to solve complex
practical problems using abstract and high-level ASCENS methods and tools. Robot swarms, science
cloud and e-mobility applications are structured as collections of numerous entities further composed
into ensembles. The resulting systems function in an autonomous and self-adaptive manner respect-
ing both individual and collective goals. Furthermore, the behavior of such systems is correct and
according to the initial specifications and requirements. The stated results have been achieved through
a tight collaboration with other work packages whose contributions have been deployed in concrete
pragmatic settings.

The focus of the work in the fourth and final project year has been on finalizing implementations,
and evaluating and validating the running systems (either in real deployments or in a close-to-real
simulation framework). These activities are described under the task ”Implementation and Evalua-
tion/Validation” (T7.1.4, T7.2.4, T7.3.4) and the task ”Performance-aware SCEs in science clouds”
(T7.2.5) that have started in the previous project year and are now completed.

1.1 Work Organization

The work in this project period has been characterized by implementation and evaluation activities.
In an intense collaboration across the project consortium, tools developed in other work packages
have been integrated, deployed and evaluated in real applications. Thus, each of the resulting system
(swarm robotics, science cloud and e-mobility scenarios) represents a combined result having elements
of each work package deployed in the final implementation.

The WP7 work package embraces three cases studies (specified, modeled and simulated in the
previous project years) with the following scenarios:

• The swarm robotics case study considers a disaster scenario, whereby a team of robots must
navigate an unknown and unstructured environment to discover potential human victims, bring-
ing them to safety. The scenarios considered during the project include distributed exploration
and wall construction with deformable material.

• Science computing focuses on a Platform as a Service (PaaS) solution. It synthesizes a com-
plete model of both the platform and the applications that run on top of an ad hoc assembled
framework.

• E-mobility deals with optimal planning of drivers routes taking into consideration drivers plan-
ning, battery restrictions, parking and charging places availability and the traffic conditions (in
realtime settings, the individual route optimization can be re-optimized at any time).

Based on the specification, model syntheses and simulation integration tasks, the work in this project
period was characterized by pragmatic deployments of ASCENS tools that forms a ground for final
implementation evaluation.

A tight collaboration with other partners, established in previous project years has continued in
this reporting period with numerous joint meeting, intense remote collaboration and common devel-
opments. Implementation and evaluation tools used for scenarios deployment are mostly developed
in other work packages making the running systems an integrated and common effort. The joint de-
liverables JD4.1 - Book on Autonomic Service-Component Ensembles, JD4.2 - ASCENS Tool Suite,
JD4.3 - ASCENS Brochure, and JD5.1 ASCENS User Guide commonly written by the whole consor-
tia describe different prespecives and different aspects of the ASCENS achievements.

Implementation and evaluation tasks combine results of theoretic work packages (WP1-WP5) with
WP6, WP8 in the following way:

ASCENS 5

D7.4: Fourth Report on WP7 (Final) March 12, 2015

• Requirements analyses and scenario specification (leading to awareness characteristics) have
been specified by SOTA and IRM approaches (WP4);

• Modeling has been done with SCEL, HELENA, KnowLang and DEECo (WP1,WP3 and WP6);

• Implementation and simulation is done with ARGoS (swarm robotics), Java and SPL (science
cloud) and jDEECo (e-mobility) environments (WP6, WP1,WP3), where each of the underlying
framework has SCEL-defined concepts of service components and ensembles enriched with
knowledge (needed for awareness and adaptation);

• Fine optimization algorithms to resolve individual and global goals (science cloud and e-mobility)
stems from WP2 as well as specification/modeling/validation effort with a white-box approach
for adaptive systems;

• Overall integration and simulation is done according to EDLC (WP8);

• On-going activities on validation and verification are being done within WP2, WP5, WP8.

Implementation and validation task started in April 2013 and continued until the end of project with
focus on validation of runtime characteristics of the deployed systems.

1.2 Structure of the Report

The work in WP7 is divided in three major tasks, dedicated to each separate case study, with a similar
sub-structure (where * stands for 1,2 and 3):

SubTask *.1. Requirements analysis and specification (ended in the first project year)

SubTask *.2. Model synthesis (ended in the second project year)

SubTask *.3. Integration and simulation (ended in the third project year)

SubTask *.4. Implementation and evaluation/validation started in 30th project month)

In the past three project years (1) requirements analyses and specification and (2) model synthesis
and (3) iIntegration and simulation were successfully finalised, making the (4) Implementation and
evaluation/validation the major subject of the work in the final project year.

This report is structured according to the major task structure, namely Sections 2, 3 and 4 describe
the swarm robotics, science cloud and e-mobility, respectively. Each section is dedicated to the corre-
sponding subtask T*.4 implementation and evaluation within the case study in question. The sections
have the following structure:

1. Overview - with a motivation and short scenario description;

2. Major awareness/autonomic challanges - highlighting some of the ASCENS related issues like
awareness, coordination, optimization, performanse awareness, etc, relative to the case study in
question;

3. Implementation details - describing the programming and deployment of the case studies sce-
narios;

4. Evaluation and validation - conducting analyses of the implemented systems, their characteris-
tics and runtime behaviors;

ASCENS 6

D7.4: Fourth Report on WP7 (Final) March 12, 2015

5. Summary - giving final remarks, further plans and a short reference on wider use of ASCENS
results in the specific application domain.

Section 5 concludes this document summarizing the results achieved in this reporting period and
in the project in general.

ASCENS 7

D7.4: Fourth Report on WP7 (Final) March 12, 2015

2 Swarm Robotics

The purpose of the robotics case study is to apply the concepts developed by the consortium to state-
of-the-art, real-world problems in distributed robotics.

In the past three years, we concentrated on the definition of a common scenario capable of of-
fering suitable challenges. We opted for a search-and-rescue scenario after a disaster happened in an
unmapped location. The robots are deployed to map the environment, search for victims and rescue
them in a completely distributed and autonomous fashion. As part of the mission, the robots must also
use material found on the spot to create walls to protect themselves and the victims from hazardous
radiation.

The definition of the robotics scenario is parametric. The nature of the parameters is such that
individual researchers can instantiate a specific configuration of the scenario. This allows researchers
to focus on interesting aspects or to develop algorithms and approaches in an incremental fashion,
increasing complexity gradually. The details of the scenario parameters have been presented in D73.

2.1 Overview

During the course of the fourth year, we worked towards the realization of two algorithms that solve
selected problems within the general scenario. We concentrated on two problems: exploration and
wall construction.

Exploration. The environment in which the robots are deployed is assumed complex and unknown
a priori. For the mission to be successful, a mechanism to map the environment is necessary. As
the environment is assumed much larger than a robot’s sensor range, multiple robots must work in a
coordinated fashion. Broadly speaking, two alternatives to mapping are possible:

• techniques that assume a robot capable of constructing local maps of the environment and local-
ize themselves acccordingly (also known as SLAM, simultaneous localization and mapping),
or

• techniques that assume the robots incapable of local mapping and localization.

For the purposes of the ASCENS project, we deemed more interesting the second alternative, because
it highlights the necessity for distributed computation and ensemble awareness. The details of the
algorithm are presented in Section 2.3.1. The basic idea of the algorithm is to divide the robots in two
groups: the explorers, which wander in the environment, and the landmarks, which occupy a specific
position and are part of a network that allows other robots to orient themselves in the environment.

Collective construction. Collective construction is an activity for which autonomous robotics has
great potential. However, to date, human intervention is unavoidable due to the complexity of the
tasks involved. The problem of coordinated collective construction is one of the most complex open
problems in autonomous robotics today. In our work, we concentrated on a specific instance of this
problem: the construction of a linear wall using amorphous material. The algorithm we designed,
presented in Section 2.3.2, is novel in that it is the first in which two different types of robots cooperate
to achieve autonomous collective construction.

2.2 Major awareness/autonomic issues

The notion of awareness and adaptation in robot swarms can manifest themselves at the individual
level and at the ensemble level. For the purposes of ASCENS, our primary focus is modeling and

ASCENS 8

D7.4: Fourth Report on WP7 (Final) March 12, 2015

achieving ensemble-level awareness and adaptation. However, the two levels are deeply intertwined—
a study of ensemble awareness/adaptation cannot neglect the individual level. Individual awareness
and adaptation can be defined as the ability of the robot to estimate its own state, as well as a relevant
portion of the ensemble state, and react effectively to state changes. By relevant portion, here we
mean that the robot must be capable of retrieving enough information about the ensemble state to
make decisions leading to correct ensemble behaviors. Ensemble awareness and adaptation refer to
the capability of the ensemble to behave as a coherent unit, by distributing information correctly and
acting in a coordinated fashion.

The relationship between the individual and the ensemble levels is complex. For instance, a high
degree of individual awareness is not required to produce complex ensemble behaviors which display
high degrees of awareness. Research on social insects show that individuals following simple rules
based on short-range information about the environment are capable of highly complex and efficient
behaviors such as nest construction and food foraging. The algorithms described in Section 2.3 are
examples of an individual behavior based on short-range information and little individual awareness
that result in a complex ensemble behavior.

In addition, ensemble awareness manifests itself not only in terms of acquired knowledge (e.g.,
raw or processed sensor data). In fact, as the algorithms in Section 2.3 show, ensemble awareness
also includes the correct assignment of roles to robots according to their physical capability. This
notion can find its realization in many ways: for instance, sensor-rich robots are more suitable for
exploration tasks, while manipulator-equipped robots are suitable for tasks that involve modification
of the working environment.

2.3 Implementation details

In this section we present the implementation of two behaviors that solve selected instances of the
robotics scenario.

In Section 2.3.1 we present an algorithm for distributed exploration, in which no robot maintains
a complete map of the environment. The final result of the behavior is the construction of a network,
which can be used by rescuer robots to reach any point in the environment.

In Section 2.3.2 we present an algorithm to achieve collective construction. This algorithm is based
on two behaviors for physically different robots: the first behavior is for gripper-equipped robots, and
it focuses the identification, transport, and deposition of construction material. The second behavior
is for sensor-rich robots, capable of monitoring the state of the partially built structure over time and
of handling the traffic of builder robots in the construction area. Similarly to the exploration behavior,
also in this behavior no robot is aware of the entire state of the robot swarm nor of the structure to be
built.

Both algorithms are interesting examples of ensemble-level awareness arising from robots with
limited knowledge and capabilities.

2.3.1 Exploration

In this section, we present a fully distributed algorithm for collective exploration. The algorithm works
under the assumption that the robots are initially unaware of the whereabouts of the victims and of the
structure of the environment. The concepts of awareness and adaptation play a fundamental role in
this application.

In terms of awareness the most important requirement is that the ensemble as a whole is capable of
representing the current knowledge regarding the structure of the environment. The ultimate purpose
of exploration is to allow a second set of robots, the rescuers, to reach the victims that need assistance.

ASCENS 9

D7.4: Fourth Report on WP7 (Final) March 12, 2015

nest

victims

Figure 1: The environment in which we studied collective exploration. Screenshot taken with the
ARGoS robot simulator.

Scenario instantiation. The scenario consists of a structured environment of widthW and depthD,
initially unknown to the robots. As reported in Figure 1, the structure of the environment mimics that
of a building floor. A team of R robots called explorers (Figure 2a) is deployed in a special area called
the nest within the environment. The size of the nest is always assumed sufficient to house the entire
explorer ensemble. We imagine that a number V of victims (Fig. 2b) are scattered throughout the
environment and must be found by the robots. The robots construct a representation of the environment
such that a second robot ensemble, the rescuers, can promptly reach the victims.

Algorithm structure. The core idea behind the algorithm is to employ the robots as landmarks. A
landmark robot occupies a specific location of the environment and maintains communication with
a number of immediate neighboring landmarks. Upon receipt of a request for direction to a specific
victim by a wandering robot, two situations can occur:

1. The landmark can see the victim directly: in this case, the landmark sends the direction to the
victim;

2. The landmark cannot see the victim: in this case, the landmark propagates the request to its
neighbors, and then selects the shortest suggested path.

The algorithm presented here concentrates on the creation of the network of landmarks and is inspired
to the approach of Nouyan et al. [NCD08]. For an algorithm that uses the landmark network to guide
robots to their destination, see Ducatelle et al. [DDF+14]. A diagrammatic representation of the
algorithm is reported in Fig. 3. In the rest of this section, we will present the main behaviors.

Wander The robots are initially deployed in the nest. Their first task is to find the exit of this area,
which leads to the environment to explore. This first behavior makes the robot navigate ran-
domly following an adapted version of the diffusion algorithm of Howard et al. [HMS02]. To

ASCENS 10

D7.4: Fourth Report on WP7 (Final) March 12, 2015

(a) An explorer robot. (b) Victims are simulated with robots.

Figure 2: The robots involved in the exploration scenario. Screenshot taken with the ARGoS robot
simulator.

facilitate the detection of the nest exit, we color-coded the ground. The nest ground is gray,
while the rest of the environment is white. Through its ground sensors, a foot-bot can monitor
the floor color, thus detecting when it exits the nest.

First Out of Nest A robot switches to this behavior when its ground sensors detect white and no
robot in range is in this behavior nor in any landmark-related behaviors. When a robot is in this
behavior, it keeps moving for a few seconds to free space in front of the nest exit. Subsequently,
the robot switches to Stable Landmark. It is not strictly necessary to ensure that a single robot
is the ‘first out of nest’. The probability that more than one robot follow this behavior is related
to the ease with which a robot can find the exit of the nest (e.g., the width of the exit, the initial
position and the sensor range of the robot).

Stable Landmark A stable landmark is a robot that occupies a specific location of the environment
and acts as a node in the communication network. A stable landmark receives requests for
direction, propagates them to neighbors, and returns an answer to the robot which issued the
request. For the purposes of this algorithm, once a robot has become a stable landmark, it
simply acts as a beacon signalling its own position.

Exit Nest The robots that are following the Wandering behavior close to the nest exit detect when
the first stable landmark appears. Upon detecting this event, a robot switches to the Exit Nest
behavior. In this behavior, the robot propagates the information about the direction to the exit
throughout its neighbors. In this way, the robots that cannot detect the first landmark directly
are informed of its presence and switch to this behavior as well. To exit the nest, a robot follows
the direction to the landmark, if directly visible, or to the closest robot that is aware of such
direction. When a robot exits the nest, it switches to the Explore behavior.

Explore A robot in this behavior performs random walk in the environment. While wandering, the
robot keeps track of the closest landmark detected. If the distance to this landmark becomes
too high (i.e., more than 80% of the maximum range of the range-and-bearing system), the
exploring robot stops and becomes a Temporary Landmark.

ASCENS 11

D7.4: Fourth Report on WP7 (Final) March 12, 2015

Wander Exit
Nest

nest
exit

found

Fist out
of Nest

out of nest and
no landmark

around

Explore

out of nest
and landmark

found

Temporary
Landmark

far enough
from landmarks

Stable
Landmark

timeout
expired

close
landmark

found

timeout expired
and no victim

Victim
Landmark

timeout expired
and victim found

Figure 3: A finite state machine representation of the exploration algorithm. Double-bordered nodes
represent final behaviors, i.e., behaviors after which no further transition is possible.

Temporary Landmark When a robot switches to this behavior, it stops its motion and waits for a few
seconds while monitoring the environment for other nearby landmarks. If a nearby landmark
is located and is too close, the robot switches back Explore. Otherwise, at the end of the
monitoring period, the robot switches to Stable Landmark or Victim Landmark, depending
on whether a victim is visible or not. The rationale for this behavior is to optimize the diffusion
of landmarks across the environment. The motion of explorers around a temporary landmark
might hide (for a short period) the presence of other stable landmarks; the monitoring period
is designed to allow the robot to collect information and discover nearby landmarks despite the
motion of the explorers.

Victim Landmark When a robot is eligible to become a stable landmark, it checks for the presence
of nearby victims. If at least a victim is detected, the robot becomes a victim landmark. This
behavior is similar to a stable landmark in that a robot becomes part of the communication net-
work, receiving and replying requests from the rescuers. However, the role of a victim landmark
is to act as the leaf node of the network when the direction to a victim in range is requested. For
the purposes of this algorithm, once a robot has become a victim landmark, it simply acts as a
beacon signalling its own position.

2.3.2 Construction

In this section, we present a novel algorithm to achieve autonomous construction with a swarm of
robots. The novel aspect about this algorithm is the fact that the swarm is heterogeneous, i.e., com-
posed of robots with different capabilities. In this work, two types of robots are employed: the
builders, equipped with a gripper capable of manipulating construction material, and the guards, spe-

ASCENS 12

D7.4: Fourth Report on WP7 (Final) March 12, 2015

object pick-up area transport area guard selection area building area

(a) Screenshot taken with the ARGoS robot simulator.

(b) A picture of the real arena. (c) The guard robot. (d) The builder robot and the construc-
tion material.

Figure 4: The environment in which we studied collective construction and the robots involved.

cialized in sensing and communication but incapable of handling construction material. The role of
the guard robots, being specialized in sensing and communication, can be played by the landmark
robots in the exploration algorithm of Section 2.3.1, thus creating a natural continuity between the two
algorithms presented in this document.

The aim of the construction algorithm is to coordinate the swarm to build a linear wall. Two
objectives must be reached: (i) the robots must be completely autonomous, and (ii) the construction
must proceed in parallel, to fully exploit the distributed nature of a robot swarm.

In general, to achieve these objectives, it is necessary for the robots to possess information about
the target structure to be built. Even in the case of a simple linear wall, information such as the
beginning and the end of the wall, its height and its thickness are necessary. Furthermore, since
the construction proceeds in a parallel fashion, the algorithm must account for partially built sections.
Thus, in this scenario, the concept of ensemble awareness is mainly concentrated on the target structure
of the wall to build and the current state of the partially built wall.

Scenario instantiation. The scenario consists of a rectangular environment ideally divided in four
areas, as shown in Figure 4: (i) the object pick-up area, which houses the construction material; (ii)

ASCENS 13

D7.4: Fourth Report on WP7 (Final) March 12, 2015

the transport area, in which the builders carry the collected object towards the guards; (iii) the guard
selection area, where the builders select the wall segment in which they will deposit their object; and
(iv) the building area, in which the builders eventually deposit their object. To mimick the irregular
material likely to be found in a disaster location, in the experiment with real robots we utilized rice
bags equipped with a ferromagnetic rod. These bags are deformable and, when dropped, form irregular
heaps much like those that might be formed with little rocks. The ferromagnetic rod allows the robots
equipped with a magnetic gripper to collect the bags with relative ease—the robots must however
approach the bags with sufficient precision for the collection operation to be successful.

Algorithm structure. The role of the builders, as the name suggests, is to collect construction ma-
terial, transport it to the building area, and deposit it, thus contributing to the construction of a wall
segment. The role of the guards, on the other hand, is threefold: (i) mark the end of a segment, and
the beginning of the next segment; (ii) monitor the current state of the segment located on its right;1

and (iii) coordinate the construction of the monitored segment, by allowing at most one builder in the
building area at any given time.

A finite state machine (FSM) representation of the behavior of a guard is illustrated in Figure 5a.
A guard can be in three possible states:

Free When a guard is in this state, an incoming builder carrying an object is allowed to enter the
building zone. When a builder enters this building zone, the guard switches to state Busy.

Busy A guard is busy when a builder is within the building zone. Other builder are not allowed to
enter, and must form a line in front of the guard to wait in an orderly fashion for their turn to
enter the building zone.

No Entry When a segment has been completed, or no segment must be built in the case of the right-
most guard, a guard is in this state. Builders are not allowed to enter the building zone corre-
sponding to this segment.

During the course of an experiment, the guard broadcast locally their current state. Upcoming builders
in the guard selection area are thus informed of the state of each guard in range and select the most
suitable segment for their contribution. It is important to notice that, in this way, builders are not
aware of the final structure to build. The representation of the target line and the current state of its
construction is responsibility of the guards, which perform this task in a distributed way. This choice
makes the algorithm scalable and adaptable for the construction of different segment-based shapes.
The behavior of a builder is reported in Figure 5b and it is structured as follows:

Look for Object At first, a builder that is carrying no object looks for objects. Upon detecting one, a
robot checks whether other robots in its neighborhood are closer than itself to the object. If not,
the robot keeps looking. Otherwise, the robot switches to Approach Object.

Approach Object A robot in this state carefully moves towards the object, aligning its attitude to best
grip it. As soon as the object is sufficiently close, the robot switches to Grip Object.

Grip Object A robot in this state performs a number of operations to grip the object. The details of
this operations depend on the nature of the object and the features of the robot gripper. Once a
robot has successfully gripped the object, it switches to Go to Building Zone.

1With the exception of the rightmost robot, for which no segment is present.

ASCENS 14

D7.4: Fourth Report on WP7 (Final) March 12, 2015

Free Busy

builder in
building area

no builder in
building area and

segment incomplete

No Entry

segment completed

(a) A finite state machine representation of the construction algorithm
from the guard point of view. Double-bordered nodes represent final be-
haviors, i.e., behaviors after which no further transition is possible.

Look
for

Object

Approach
Object

object found
and closest
to object

Grip
Object

at gripping
distance

Go to
Building

Zone object
gripped

Choose
Best

Guard

guard(s)
detected

Join
Line

guard
chosen

Wait
in Line

guard
busy

Enter
Building

Zone

guard
free

guard
free

Look for
Deposition

Spot

in
building

zone
Deposit
Object

spot
found

Exit
Building

Zone

object
deposited

out of
building

zone

(b) A finite state machine representation of the construction algorithm from the builder point of view.

Figure 5: The robot construction behavior represented as FSMs.

ASCENS 15

D7.4: Fourth Report on WP7 (Final) March 12, 2015

Go to Building Zone A robot that has gripped an object successfully must carry it to the building
area. The first operation to perform is to rotate towards the building zone. In the current imple-
mentation of the algorithm, the robot simply rotate 180 degrees, leaving the object on its back.
More complex implementations might use information from robots who have just been in the
building zone to select a more accurate direction. A robot traverses the transportation area and
eventually enters the guard selection area. Upon entering this area, it switches to Choose Best
Guard.

Choose Best Guard A robot is in the guard selection area when it is capable of detecting more than
one guard. When a robot is in the guard selection area, its task is to choose the guard whose
segment is the most comfortable to reach. The selection can be performed according to many
criteria; in the current implementation, the robots typically picks the closest guard in the free
state, preferring closest guards in busy state to farther free guards. Upon choosing a guard, the
robot switches to Join Line.

Join Line Regardless of the fact that a guard is free or busy, a robot positions itself so as to form a line
in front of the guard. If the guard is free, the robot switches to Enter Building Zone; otherwise
it switches to Wait in Line.

Wait in Line When a guard is busy, the robot must wait for its turn to enter the building zone. If
the waiting line is empty, the robot positions itself in front of the guard; if the line already has
robots waiting, the robot positions itself behind these robots. When the robot occupies the first
place in the line and the guard becomes free, the robot switches to Enter Building Zone.

Enter Building Zone To enter the building zone, the robot uses as references the chosen guard and
the guard located on its right. The segment formed by the two guards is used as x axis of a
right-handed 2D reference frame to locate the spots where the wall segment starts and ends.
As soon as the robot has identified these two spots and it is close enough to the wall start, it
switches to Look for Deposition Spot.

Look for Deposition Spot When in this state, a robot moves along the partially built wall to find a
crack or the wall end. As soon as a suitable spot has been detected, the robot switches to Deposit
Object.

Deposit Object A robot in this state performs the necessary operations to deposit the object in the
selected spot. Once the object has been deposited, the robot switches to Exit Building Zone.

Exit Building Zone Similarly to Enter Building Zone, the robot uses the two reference guards to
orient itself within the building zone and reach the exit. Once the robot is out, the guard detects
that the building zone is empty and switches back to the Free state, while the builder swicthes
back to Look for Object.

2.4 Evaluation and validation

The main phases of a typical execution of the exploration algorithm are illustrated in Figure 6. The
main phases of a typical execution of this behavior are illustrated in Figure 6. This behavior is also
demonstrated in the video shown during the final project review meeting.

The robotics scenario has been studied extensively throughout the project. In the following, we
report a brief recap of the essential results.

ASCENS 16

D7.4: Fourth Report on WP7 (Final) March 12, 2015

(a) The first explorer exits the nest and becomes a stable
landmark.

(b) The other robots exit the nest.

(c) The explorers navigate the environment, occasionally
becoming stable landmarks.

(d) Explorers that are close to a victim become victim
landmarks.

Figure 6: The essential phases of the exploration behavior. Screenshots taken with the ARGoS robot
simulator.

2.4.1 Requirement Engineering

Property-Driven Design. As explained in Section 2.2, the dynamics of a robot ensemble comprises
two levels—the ensemble level and the individual level. The requirements are typically expressed at
the ensemble level, but the mechanisms that realize the wanted behavior are executed at the individual
level. A natural approach to reconcile the two levels is to work in step-by-step fashion, gradually
refining the ensemble requirements by expressing them in more detailed forms that, eventually, lead
to a practical implementation. This idea is the core of the work of Brambilla et al. [BPBD12], who
demonstrated their approach on typical swarm behaviors such as aggregation and foraging.

Engineering Self-Organization and Emergence. In [NZ15], Noël and Zambonelli illustrate a num-
ber of methodological guidelines to engineer the basic self-organization mechanisms that lead to coor-
dinated ensemble behaviors. The author demonstrate their approach through a variant of the scenario
in which the robots must spread in an unknown environment and find victims.

ASCENS 17

D7.4: Fourth Report on WP7 (Final) March 12, 2015

(a) A builder collects an object. (b) A builder transports an object.

(c) A builder enters the building zone. (d) A builder looks for the deposition spot while another
waits in line.

Figure 7: The essential phases of the construction behavior.

2.4.2 Modeling / Programming and Verificaton / Validation

SCEL modeling. In [NLL+15], De Nicola et al. present a complete SCEL model of a scenario
variant in which robots must find and rescue victims. The robots can take the role of explorers or
rescuers. Explorers search for victims; when a robot detects a victim, it becomes a rescuer. A rescuer,
beside assisting a victim, informs other robots of the victim’s position, thus attracting more rescuers.
The SCEL model considers also the possibility that the battery charge reaches a low level, in which
case the robots pause their activity and turn to the battery charging state. The authors describe two
models: one based on PSCEL (a SCEL variant which includes policies), and one based on StocS (a
stochastic extension of the SCEL semantics).

jRESP implementation. In [NLL+15], De Nicola et al. also describe an implementation of the
SCEL model in the jRESP framework, a Java runtime environment that realizes the SCEL paradigm.
The remarkable aspect of this exercise is that the primitive concepts of jRESP closely resemble those
of SCEL. Thus, through jRESP, an abstract model of a distributed algorithm for robotics can find a
direct, practical implementation whose performance can be studied and characterized. In fact, jRESP
programs can be simulated and analyzed through a statistical model checker. De Nicola et al. report
the results of such an analysis on the robotics scenario, studying the probability that a victim is rescued
within a given time using different numbers of robots.

Maude implementation. Another contribution of [NLL+15] is an analysis of a specific aspect of
the scenario modeled in SCEL through a tool called MISSCEL (Maude Interpreter and Simulator for
SCEL). MISSCEL is an implementation of SCEL in the Maude framework, a software for model
checking. De Nicola et al. focus on collision avoidance, a basic behavior the robots perform while

ASCENS 18

D7.4: Fourth Report on WP7 (Final) March 12, 2015

Environment

Robot

Behavior

(a) A robot, its behavior, and the interaction
with the environment.

Environment

Robot Robot

Behavior Behavior

Coordinator

(b) Centralized coordination.

Environment

Robot Robot

Behavior Behavior

(c) Direct communication.
Environment

Robot Robot

Behavior Behavior

(d) Environment-mediated communication.

Figure 8: Coordination patterns for groups of robots. The solid lines indicate generic interactions
among entities. The dashed lines indicate coordination-aimed interactions among entities.

exploring the environment. In particular, they analyze the efficiency of collision avoidance when
the robots are informed (i.e., can use the proximity sensors) and uninformed (i.e., they choose their
direction at random).

Physics-based modeling and implementation. A common technique to study behaviors in robotics
is employing physics-based simulation. The advantage of this kind of simulation is the close resem-
blance of the simulated system dynamics with respect to its real counterpart. Physics-based simulation
typically include every relevant aspect that affects the behavior of the robot ensemble—body collisins,
network communication errors, etc. For the work in ASCENS, we employed the ARGoS multi-robot
simulator [PTO+12], a state-of-the-art software capable of accurately simulating experiments involv-
ing thousands of robots in a fraction of real time. Example experiments developed with ARGoS are
presented in this document.

SMC-BIP Verification. In [CBK15], Combaz et al. present an approach to the verification of dis-
tributed robot behaviors based on the BIP statistical model checker. The main advantage of BIP over
other modeling techniques is that BIP models can be transformed into executable programs automat-
ically, making it possible to link modeling and implementation seamlessly. The authors model the
scenario variant described in detail in Section 2.3.1, analyzing the effects of several alternatives for
each robot behavior on the overall system performance.

2.4.3 Awareness and Adaptation

Adaptation patterns. In the robotics case study, each individual robot is considered as a Service
Component (SC). Each SC is associated to a program that controls its actions, here referred to as
behavior (see Figure 8a). Groups of connected robots (physically or networked) form Service Com-
ponent Ensembles. To achieve adaptation in robot ensembles, we identify four general patterns. These
adaptation patterns can be expressed following the approach described in [HKP+15] for the mapping
between SCs and autonomic managers. In this context, the robots are proactive service components,
and the concept of robot behavior coincides with that of internal autonomic manager. The adaptation

ASCENS 19

D7.4: Fourth Report on WP7 (Final) March 12, 2015

patterns can be classified into two general categories: (i) patterns that include an element of cen-
tralization, and (ii) fully distributed patterns. In patterns that include an element of centralization,
such element is typically meant as dedicated SCs that collect information from the robot SCE, make
decisions, and instruct the robots accordingly (see Figure 8b). In the approach of [HKP+15] this SC is
an external autonomic manager. In fully distributed adaptation patterns, the main coordination means
is inter-robot communication. Communication can occur in two ways: either directly (a robot explic-
itly sends a message to another robot, Figure 8c), or indirectly (a robot reacts to the changes in the
environment made by other robots, Figure 8d). Indirect, or environment-mediated communication, is
also known as stigmergy [Gra59].

Black-box and white-box adaptation. In [BCG+15], Bruni et al. employ the robotics scenario
depicted in Figure 1 as a testbed to validate a unified approach to both black-box adaptation (i.e.,
adaptation behaviors as they appear to an outside viewer) and white-box adaptation (i.e., adaptation
mechanisms that affect the internal behavior of the system).

Reasoning and Learning for Awareness and Adaptation. In [HG15], Hölzl et al. propose a mod-
eling approach called Extended Behavor Trees (XBTs). This approach targets hierarchical, concurrent
behaviors that interleave reasoning, learning, and actions. XBTs can be translated into SCEL, thus
integrating the EDLC and enriching its scope. The approach is validated on a variant of the proposed
scenario.

2.5 Summary

We presented the robotics scenario used throughout the ASCENS project. The scenario imagines that
a disaster happened in an area whose structure is unknown. Victims are assumed scattered at unknown
locations. A robot ensemble is deployed to the area and must save the victims.

We decoupled the scenario in a number of parametric phases, allowing the ASCENS researchers
to “tune” the complexity of the desired aspects at will.

The choice of this scenario stemmed from the need to expose ASCENS researchers to real-world
coordination problems for robot ensembles. These problems proved useful to foster several studies
spanning modeling, design, requirement specification, verification, adaptation, and awareness.

We presented two implementations that demonstrates possible, albeit simple, solutions for the
scenario. These implementations have been used throughout the project as a reference, allowing re-
searchers to analyze their properties and improve on their limitations.

ASCENS 20

D7.4: Fourth Report on WP7 (Final) March 12, 2015

3 The Autonomic Cloud

Cloud computing is a recent trend in large scale computing that involves the provisioning of IT re-
sources in a dynamic and on-demand fashion. It supports both conventional scenarios such as scaleout,
in which companies opt to extend locally available, internal resources with additional external capac-
ities from a cloud temporarily or for a longer period of time, and new cloud-specific usage scenarios
like purely cloud-based applications that may be offered in a cost-efficient, demand-driven way.

Cloud computing services are usually classified into three layered solutions, which are Infrastructure-
as-a-Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS). The first is the
lowest level and refers to the provisioning of virtual machines; the second is one step higher and pro-
vides a development and execution platform regardless of the actual machine, and the last involves the
provisioning of complete applications on an on-demand basis.

The goal of the Autonomic Cloud case study of ASCENS — also called the Science Cloud case
study due to its envisioned use within the scientific community — is building a cloud system whose
components are self-aware, self-monitoring, and able to self-adapt in the face of problems. As such,
this cloud is built following the concepts of a Platform-as-a-Service, that is, it provides a development
and runtime platform for applications. However, the scenario where this cloud will be deployed and
the parts it consists of are very different from that of a classical cloud implementation. In particular,
the nodes forming this cloud will not be well-maintained and secured servers. Instead, the cloud relies
on autonomic nodes — machines and software which will be provided on a case-by-case basis, mostly
voluntarily, and can be withdrawn or change in load at any time.

This environment necessitates a different way of organizing application execution, resilience, data
storage, and communication — the autonomic cloud computing platform must be able to execute ap-
plications in the presence of difficulties such as leaving and joining nodes, fluctuating load, and hard-
and software requirements of applications which some of the nodes may not be able to fulfill. This
vision has been achieved with the integration of key ASCENS concepts and methods in the imple-
mentation of this case study, where the basic nodes of the cloud are realized using service components
(also called SCPi, for Science Cloud Platform instance). Those components which work together to
execute an application dynamically form a service component ensemble (called an SCPe, or Science
Cloud Platform ensemble).

Although the cloud relies on voluntarily provided nodes, participation of centrally-controlled en-
tities such as IaaS providers is by no means prevented. In fact, parts of the autonomic cloud may
run on IaaS solutions which enables it to spawn new virtual machines or shut them down again. This
additional functionality is used to balance load or to conserve energy, and has been integrated into the
commercial cloud infrastructure of the ASCENS partner Zimory [Zim14].

This deliverable describes the autonomic cloud case study, its origins, use of ASCENS methods,
implementation, and evaluation. The next section will discuss influencing areas of computing for
the case study (Section 3.1). In Section 3.2, we will discuss handling awareness and adaptation in the
cloud by means of the ASCENS methods. The implementation of the cloud is discussed in Section 3.3,
followed by an evaluation in Section 3.4. We conclude in Section 3.5.

3.1 Influencing Areas of Computing

Before delving into the deeper details of the cloud, we discuss the three major computing areas which
have been influential for realizing the autonomic cloud vision, which are cloud computing, voluntary
computing, and peer-to-peer computing.

ASCENS 21

D7.4: Fourth Report on WP7 (Final) March 12, 2015

3.1.1 Cloud Computing

Firstly and obviously, we deal with cloud computing [Pet]. Cloud computing refers to provisioning
resources such as virtual machines, storage space, processing power, or applications to consumers ”on
the net”: Consumers can use these resources without having to install hardware or software themselves
and can dynamically add and remove resources.

There are three commonly accepted levels of provisioning in cloud computing, which are infras-
tructure, platform, and software. In the first, low-level resources such as virtual machines are offered.
In the second, a platform for executing custom client software is provided. On the third level, complete
applications (such as an office suite) are provided, mostly directly to end users. In any case, clouds are
usually offered from one or more centrally managed locations; the servers providing the infrastructure
run in a well-maintained data center and are under the control of a single entity.

In the ASCENS cloud computing case study, we will be concerned with a Platform-as-a-Service
(PaaS) solution. The goal of the case study is providing a software system (called the Science Cloud
Platform, SCP) which will, installed on multiple virtual or non-virtual machines, form a cloud pro-
viding a platform for application execution (these applications in turn providing SaaS solutions). The
applications running on top of the platform are assumed to have requirements similar to Service Level
Agreements (SLAs), which includes where they can and want to be run (regarding CPU speed, avail-
able memory, or even closeness in network terms such as latency to other applications or nodes).

3.1.2 Voluntary Computing

The second area is voluntary computing. This term usually refers to solutions in which individuals
(consumers) offer part of their computing power to take part in a larger computing effort. The classic
examples are the @home programs, of which SETI@Home [KWA+01] where personal computers are
used in the search for extra-terrestrial intelligence is probably the most famous. Usually, voluntary
computing is focused on computation; it depends on an agency which provides a centralized infras-
tructure into which people may plug-in, get their data from, perform calculations, and report back.

In the ASCENS cloud computing case study, we adopt the voluntary computing approach insofar
as we imagine individual entities (which includes natural persons, but universities as well) to voluntar-
ily provide computing power in the form of cloud nodes which they can add or remove at any time as
they see fit; i.e. nodes can come and go without warning, and their load may change outside of cloud
concerns. They may include vastly different hardware, which includes CPU speed, available memory,
and also specialized hardware as, for example, graphics processing chips.

3.1.3 Peer-to-Peer Computing

Finally, the last area is peer-to-peer computing [ATS04]. First popularized in the infamous area of
file sharing, the basic idea of peer-to-peer computing is the lack of a centralized structure. There
is no single node in the network on which the functionality of the overall system depends; rather, a
decentralized communication approach is used which ideally is stable through the process of nodes
coming and going, and offers no single point of failure, or single point of attack.

The ASCENS cloud computing case study is based on this idea; i.e. there is no centralized compo-
nent in this cloud and nodes have to use some protocol to agree, in a decentralized manner, on where
and what to execute. As already discussed above in the voluntary computing part, nodes may thus
come and go without having to inform a central entity.

ASCENS 22

D7.4: Fourth Report on WP7 (Final) March 12, 2015

3.1.4 Bringing it all together

Thus, all in all, we have a voluntary, peer-to-peer based platform-as-a-service solution. Such an in-
frastructure requires autonomic nodes which are (self-)aware of changes in load (either from cloud
applications or from applications external to the cloud) and of the network structure (i.e. nodes com-
ing and going) which requires self-healing properties (network resilience). Another issue is data re-
dundancy in case nodes drop out of the system, which requires preparatory actions. Finally, executing
applications in such an environment requires a fail-over solution, i.e. self-adaptation of the cloud to
provide what we may call application execution resilience.

To sum up in one sentence, the goal of the SCP is to deploy and run user-defined applications on
the p2p-connected web of voluntarily provided machines which form the cloud.

3.2 Handling awareness and adaptation

The ASCENS project has contributed many techniques and methods to the area of self-aware and self-
adapting systems. In this section, we will focus on four important areas which have been influential
for the design of the Adaptive Cloud, and in turn have been validated on the Science Cloud Platform
implementation.

The first of these are adaptation patterns which serve as a way of structuring the cloud on an
architectural level (section 3.2.1). Following this, we discuss modeling of ensemble behavior in a
rigorous way by using the Helena approach (section 3.2.2). System specification is best executed
using specifically developed language primitives, namely from the SCEL language (section 3.2.3).
The nodes in the autonomic cloud may be personal computers and as such may be mobile. Issues
relating to this fact have been investigated in the DEECo approach (section 3.2.4).

Other ASCENS methods have been used on the cloud case study as well, which are not described
in detail here due to space limitations. We discuss an overview of these, including the lifecycle which
ASCENS defines for the development of autonomous systems, in section 3.2.5.

3.2.1 Adaptation Patterns

A common approach to understanding, categorizing, and designing IT systems is the use of patterns,
i.e. descriptions of characteristics which have proven to be beneficial for the implementation of a
system. Within ASCENS, a catalog of architectural design patterns has been developed [CPZ11a]
which are intended to be used to build adaptive components and systems. The design patterns have
been studied with regard to the cloud case study. In this section, we will discuss two patterns which
have been used in the cloud.

Firstly, we need to discuss individual cloud nodes (which we call SCPis, for Science Cloud Plat-
form instances). In this regard, the proactive service component pattern [PF13] best captures the
behavior of such a node. This pattern enables the SCPi, which is a Service Component (SC) in the
terms of ASCENS and the adaptation pattern itself, to have an internal feedback loop, or, in other
words, implicitly contain an Autonomic Manager (AM) which is responsible for driving the adapta-
tion through this feedback loop. These kinds of components are used because nodes in the cloud are
goal-oriented in nature and actively try to adapt their behavior, even without an external call (e.g. for
saving energy). A visualization of such a component is shown in Figure 9.

In the cloud, one such node uses its sensor to read environmental values such as CPU speed,
current load, etc.; effectors may be used to configure an IaaS solution. Inputs and outputs refer to
a user interacting with deployed applications. The control and emitter ports are used for ensemble
adaptation (see below).

ASCENS 23

D7.4: Fourth Report on WP7 (Final) March 12, 2015

By using the proactive service component pattern, individual SCP nodes are self-aware and able
to self-adapt, each following the goal of achieving best performance for deployed apps while saving
energy. The internal feedback loop created through the AM part of the node is used for checking these
conditions and adapting properly.

Figure 9: Proactive Service Component

Furthermore, multiple nodes work together to execute applications. On this level, the p2p negoti-
ation service components ensemble pattern [PF13] is a fitting description of this behavior, since each
node (potentially) communicates with every other node for adaptation, there is no central coordinator,
and each node follows a goal (which in this case is the same for each node, though with different data
depending on deployed apps). The use of this pattern is also possible because the components that
form the ensemble are proactive and need to communicate with others to propagate adaptation. This
is done, as indicated above, through the control and emitter interfaces of the service component.

Using this pattern, multiple SCP nodes work together: For each application, one ensemble con-
sisting of a subset of the overall cloud nodes is formed which is then responsible for executing the
application (which includes deployment, finding an executor, executing, and monitoring). We call
such an ensemble an SCPe (Science Cloud Platform ensemble).

Obviously, there are also other ways in which a cloud can be organized. In [PF13], the applica-
bility of the centralized AM service components ensemble pattern was discussed as well. This pattern
proposes a completely different setup which does not use a peer-to-peer ogranization but instead uses
a centralized autonomic manager. Dynamically adapting the cloud to such a structure might be advis-
able in the case of a partial blackout of the cloud, that is, a large percentage of the cloud goes down.
If only a few nodes remain, switching to a centralized mode in which one AM coordinates many in-
dividual nodes (which give up their own adaptivity mechanisms for the time being) might prove to be
more effective. Nevertheless, this pattern can only be applied as long as its context of applicability is
the same as in the observed case. When the context changes again, the pattern has to be changed as
well.

ASCENS 24

D7.4: Fourth Report on WP7 (Final) March 12, 2015

3.2.2 Modeling Ensemble Behavior

Modeling the behavior of the individual components and the ensembles which implement the cloud
functionality is challenging due to the complexity and dynamics of the participating ensembles. In
ASCENS, existing techniques such as component-based software engineering ([Szy02, RRMP08])
have thus been augmented with features that focus on the particular characteristics of ensembles.
Among these is the fact that ensembles are dynamically formed on demand, realizing collective, goal-
oriented behavior through communication between the individual participants; furthermore, multiple
ensembles may run concurrently using the same basic resources, but dealing with different tasks on
a higher level. To be able to model these issues on a first-class basis, the Helena approach [HK14]
has been developed, which uses a UML-like notation for collaborations founded on a rigorous formal
semantics.

A particular property of ensembles is the fact that although the platform on which ensembles run
may itself be plain component-based, each component can take part in different ensembles and in the
course of doing so take up different, ensemble-specific roles. A service component may play different
roles at the same time, both in one ensemble and in different, concurrently running ensembles; it may
also dynamically change its role(s) in order to adapt to new situations.

The Helena approach is centered on this notion of roles and the collaboration of roles in ensembles
for pursuing the ensemble goal. In the present case study, there may be multiple such ensembles; one
for each of the applications which are executed within the cloud. Each ensemble has the goal of
deploying the application, finding an execution target node, executing, and finally monitoring the
application execution. This is illustrated in Figure 10.

Figure 10: Ensembles in the Helena approach

The first or basic level (on the bottom of the figure) shows the pool of all SCPi nodes which are, in
principle, able to provide resources to the cloud. In the figure, these are the four nodes labeled i1 to i4,
which may be physical or virtual machines on which instances of the science cloud platform (SCPis)
are running. Each of these may participate in ensembles for executing an application.

As indicated in the figure, executing an application requires different responsibilities taken up by
different roles in the ensemble; in total, there are six roles of which four are shown in this overview
figure. These are the deployer (node from which the application originates), the initiator (leading

ASCENS 25

D7.4: Fourth Report on WP7 (Final) March 12, 2015

the search for an execution node), the actual executor, and a stopper which deals with application
shutdown. As an example, the figure shows two different ensembles, each executing one application,
where nodes concurrently play different roles or do not participate at all.

Helena allows the fine-grained specification of the role interactions as well as the description of
the behavior of each role (for details, see [KMH14]). These descriptions are given a rigorous formal
foundation, which can then be exploited for ensuring that the ensemble behavior actually reaches
the desired goal. We believe that the analysis of ensembles of collaborating roles is beneficial to
developers due to the reduction of the complexity of the models, since the combination of all roles
within one service component must only be integrated into a component-based architecture in the
following implementation phase.

This phase is discussed in the next section, where a language is presented to which a systematic
transition from Helena is currently being investigated.

3.2.3 System Specification in SCEL

The challenge for language designers posed by autonomic systems is to devise appropriate abstractions
and linguistic primitives to deal with the large dimension of systems, to guarantee adaptation to (pos-
sibly unpredicted) changes of the working environment, to take into account evolving requirements,
and to control the emergent behaviors resulting from complex interactions. To face this challenge,
starting from existing formalisms for specifying distributed and interacting systems, in ASCENS a
new language has been designed that supports programming context-awareness, self-awareness, adap-
tation and ensemble-wide interactions. This language, called SCEL (Software Component Ensemble
Language) [DLPT14], provides a complete set of linguistic abstractions for specifying the behavior
of autonomic components and the formation of their ensembles, and for controlling the interaction
among autonomic components.

SCEL is, somehow, minimal; its syntax fully specifies only a small set of constructs for specify-
ing autonomic systems naturally, avoiding the intricacies due to encoding in lower level languages.
SCEL can be thought of as a ”kernel” language based on which different full-blown languages can be
designed. In particular, here we consider PSCEL (see [NLL+15]), the instantiation of SCEL obtained
by using tuple spaces for managing components’ knowledge and the language FACPL for expressing
the policies regulating components’ behaviour.

In the rest of this section, we consider the PSCEL specification of a scenario in the cloud where
an SCPi is overloaded, i.e. the CPU load exceeds a certain threshold, and an application needs to be
moved to a different node. This scenario requires the use of an IaaS solution, as it demands the ability
to dynamically spawn a new virtual machine and move the application there (indeed, it also prescribes
that the application is a singleton). The full specification of the scenario can be found in [MPT13].
Here we only outline the general idea.

The SCPi where the application is initially running is a PSCEL component of the form I[K,Π, P].
The interface I makes available information about the component itself in terms of attributes. K is the
knowledge of the SCPi. Π is the policy regulating the component behaviour. P is the set of concurrent
processes running in the component.

SCPis follow the proactive service component pattern (described in Section 3.2.1). Thus, the appli-
cation logic, implemented as part of process P , uses a group-oriented action to retrieve an application
from a member of the SCPe within a given geographical area. This ensemble is dynamically deter-
mined when the action is executed and consists of all components that expose in their interface the
location attribute with the given value (indeed, the notion of ensemble in SCEL matches the notion of
SCPe, as both are based on components’ attributes). Then, the process sends the retrieved application
for execution.

ASCENS 26

D7.4: Fourth Report on WP7 (Final) March 12, 2015

The adaptation logic (i.e., when to adapt) is implemented by the policy Π. Indeed, the compo-
nent’s interface I exposes the attribute CPULoad, whose value (i.e., a percentage of load) is a context
information sensed by the component from the underlying infrastructure. The policy Π then detects
when the attribute value is over a given threshold (e.g., 90%) and, in that case, triggers a self-adaptive
behaviour. More specifically, the policy states that a new application can be retrieved as long as CPU-
Load is less than the threshold. If the process running in the component attempts to retrieve a new
application and the threshold is exceeded, then the policy evaluation returns an obligation action for
spawning a new SCPi.

An interesting aspect in this context is that in a dynamically created SCPiK, Π and P are the same
as those of the creating SCPi. However, the application logic, which is part of P , may only be executed
on one SCPi at a time (because, due to the scenario requirements, no two instances of the application
can run simultaneously). To ensure such behavior, the component relies on a policy automaton, whose
states are policies and transitions represent adaptation events. In this way, the policy in force at the
component can be dynamically switched according to adaptation events. In our example, the policy
automaton ensures that whenever a new component has been created and the application is moved
there, if the run-time value of the attribute CPULoad of the ‘old’ component decreases and becomes
less than 90%, the application instance running there cannot resume its execution.

3.2.4 Supporting Mobile Nodes with jDEECo

An interesting aspect of the case study is the fact that the individual nodes can be personal computers.
As such, the concept also includes mobile nodes: laptops, tablets, or even smartphones. Mobile
devices have some noteworthy properties in addition to standard nodes. They are devices (a) whose
neighbors – in the sense of network proximity – may change, (b) whose battery capacity is limited,
and (c) whose computing capacity may be (severely) limited as well.

Applications running on top of the autonomic cloud may want to take those properties into con-
sideration. In fact, we can imagine that applications intended to run on mobile devices be effectively
split into two components, or smaller applications, communicating with one another. In one scenario,
they may both run on one SCPi — if the node is powerful enough and access to power is not an issue;
in another, they may be split between two SCPis, one on a mobile node (which handles UI) and an-
other on a stationary node (which handles the computationally extensive background work). In order
to keep the user interface responsive, the network latency between the two nodes may not exceed a
certain threshold, which becomes problematic in the presence of (physical) node mobility.

This scenario has been investigated as described in [BBHK13] and is further detailed in [BBG+15].
It uses the jDEECo framework of ASCENS, which is described in [BGH+15]. The envisioned solu-
tion for this case uses a specialized adaptation architecture which, through two components, takes care
of the planning and monitoring involved.

The first component involved is the monitor, which works within an application and can operate
in one of two modes:

Observation mode. In observation mode, the monitor executes as part of a running application, i.e.
it reflects the actual deployment. The monitor gathers data about the current node, which includes the
performance and battery life. This non-functional properties data (NFPData) is used by the planner
(see below) to decide on adaptation.

Predictive Mode. A monitor may also be detached from its application and spawned on a different
node where it runs in predictive mode, testing the performance of the node with the performance
model of the application (MonitorDef) in mind, but without actually moving the whole application.
Again, NFPData is generated which can be used by the planner.

The second component is the planner. The planner provides the SCPi with MonitorDefs for the

ASCENS 27

D7.4: Fourth Report on WP7 (Final) March 12, 2015

monitors involved, which the SCPi can distribute to interesting nodes for gathering NFPData. Based
on information about the application, which is included in a deployment plan, the planner is able to
restrict which nodes are interesting; for example, this may include nodes which are a limit of two
hops away. Based on the information in the NFPData from affected nodes, the planner instructs the
underlying SCPi(s) to deploy the applications appropriately given the data.

A particular advantage of the monitor approach with predictive modes is the availability of real
data: The monitor deployed on remote nodes is able to report, based on its MonitorDef, precisely those
measurements which are relevant for the application. As usual, the nodes which may take part in the
execution of an application form an ensemble with the specific task to figure out the best configuration
for all entities involved.

Figure 11 shows a simplified definition of such an ensemble.

Monitor(Ab)
<<running>>

<<mock>>

Mobile device Stationary device

Monitor(Af)
<<running>>

Planner(A)

NFPData(Ab) MonitorDef(A*)

NFPData(Af)

MonitorDef(*)

NFPData(A*)

DeploymentPlan(A)

MonitorDef(*)

Monitor(Ab)
<<mock>>

<<running>>
NFPData(Ab)

(2) The Device spawns a new monitor
in the mock mode for each MonitorDef
(3) After external ly migrating-in
the application component the Device
turns the monitor into running mode

NFPDeviceData(*)
(2, 3)

Device(S)

(2)

(1) The Device spawns a new
monitor in the mock mode for each new MonitorDef
(3) After external ly migrating-out the application
component the Device turns the monitor into mock mode

Device(M)

NFPDeviceData(A)
(1, 2)

(3)

NFPDeviceData(A)

NFPDeviceData(*)

(3)

(2, 3)

(2)

(3)

(1, 2, 3)

(1, 2, 3)

(1, 2, 3)

Distributes only models
that are allowed to be
migrated on the device

Figure 1: Adaptation architecture of the running example: phases 1 (M isolated), 2 (S discovered), and 3 (Ab
migrated to S). Phases 1,2,3 are in the figure denoted by (1), (2), (3).

the included performance dependency model of the
corresponding application component (e.g., the func-
tion CPU × GPU → FPS). In other words, Monitor
predicts – based on the model – the performance of
the application component if it would be deployed on
that computation node. The model might depend on
particular machine-specific performance data (NFPDe-
viceData, e.g., available CPU speed, etc.); see Device.

Device. Each computation node is reflected by the De-
vice component. Specifically, a Device component ensures
management of the Monitors (e.g., it instantiates Monitors
advertised by newly discovered Planners) and it provides
NFPDeviceData for Monitors in the mock mode.

4.2 Adaptation architecture ensembles
The expectation is that the number of available computa-

tion nodes, as well as the number of Monitors, changes dynam-
ically. Therefore, the communication among the components
exploits the concept of emergent component ensembles. The
architecture involves the following ensembles (Figure 1):

Planner and Device(s). Each Planner is a coordinator
of an ensemble that distributes MonitorDefs (including the
performance dependency model) of application components
to Devices representing currently available computation nodes
(including the one the Planner is running on). The Planner is
able to constraint which MonitorDefs should be distributed
to which Devices (effectively constraining the potential mi-
gration destinations for a particular application component).
A simplified example of a definition of this ensemble is in
Figure 2. It specifies that only reachable devices within
2 network hops are to be considered and that this check is
to be performed every 15 seconds. The distribution of the
MonitorDefs is performed by adding the MonitorDef to the
target component’s knowledge.

Planner and Monitor(s). Each Planner is a coordinator
of an ensemble that aggregates NFPData from all Monitors
corresponding to the components of the application reflected
by the Planner. Thus, this ensemble aggregates all the de-
ployment alternatives for the application.

1 ensemble PlannerToDevice:
2 coordinator: Planner
3 member: Device
4 membership: HopDistance(Planner.device, Device) ≤ 2
5 knowledge exchange:
6 Device.monitorDef[Planner.app] := Planner.monitorDef
7 scheduling: periodic(15s)

Figure 2: Example of an ensemble definition.

Device and Monitor(s). Each Device component is a
coordinator of an ensemble that distributes NFPDeviceData to
the Monitors in the mock mode residing on the corresponding
computation node.

4.3 Adaptation architecture in action
In this section, we illustrate on the motivation example

the adaptation architecture interaction at runtime.
At first (phase 1, Figure 1), the ensemble distributes the

MonitorDefs of both Af and Ab from Planner of A to the Device
component of the mobile device (M), which subsequently
spawns Monitors for both components and sets them to the
running mode. The Monitors start measuring NFPData of the
running components which are then aggregated back to the
Planner. So far no deployment alternatives are discovered.

After the stationary device (S) is discovered (phase 2,
Figure 1), the ensemble propagates MonitorDefs of the com-
ponents that could be (potentially) migrated (i.e., Ab) to its
Device component, which spawns a new Monitor. Since Ab is
deployed on a different Device this Monitor runs in the mock
mode. Thus, the Device component of the stationary device
feeds the Monitor with NFPDeviceData allocated for A. Based
on this NFPDeviceData and the performance dependency
model of Ab the Monitor produces NFPData reflecting the
expected performance of Ab on S. Consequently, another
ensemble aggregates all the currently produced NFPData
for Af and Ab to the Planner. The Planner thus eventually
discovers that there are two deployment alternatives for Ab
(i.e., one actually running on M and one modeled on S) and
finally decides to deploy Ab on the stationary device.

345

Figure 11: Ensemble Definition

All in all, the adaptation architecture based on planners and (mock) monitors allows for a very
flexible awareness of the network environment. While this approach is useful for all kinds of nodes
the SCP may run on, it is particularly helpful in the presence of mobile nodes.

3.2.5 The EDLC and Other ASCENS methods

The ASCENS project defines a lifecycle for the development of ensembles, which is called the EDLC
(see [HKP+15]). This lifecycle, which consists of eight phases, describes how to use the various
methods defined in ASCENS in the design of a system such as the autonomic cloud. The EDLC
consists of two cycles; the first (the design cycle) includes the activities requirements engineering,
modeling/programming, and verification/validation; the second (the runtime cycle) consists of the
activities monitoring, awareness, an self-adaptation.

The two cycles are connected by the deployment activity (from design to runtime) and the feedback
activity (from runtime to design); in the cloud, both are handled by the Science Cloud Platform (SCP)
implementation.

Each method of ASCENS is associated with a different activity in the EDLC. In the following, we
discuss methods of ASCENS which have been applied to the case study, and their place in the EDLC.
We first discuss the design time cycle.

Requirements Analysis with ARE The first phase in the Ensemble Development Life Cycle (EDLC),
which is about requirements engineering, is supported by ARE (Autonomy Requirements Engineer-
ing). The ARE method has been used to provide detailed requirements for the autonomous cloud and
is described in [VH15].

Adaptation Patterns in the Cloud Following requirements engineering, the architecture of the sys-
tem can be designed in the modeling phase of the EDLC by choosing the correct adaptation patterns
for the cloud implementation. This technique has been shown in section 3.2.1.

ASCENS 28

D7.4: Fourth Report on WP7 (Final) March 12, 2015

Modeling with Helena An important aspect of service components and ensembles is the fact that
components may play different roles in different ensembles, which has been shown in section 3.2.2
and is used in the modeling activity in the EDLC.

System Specification in SCEL One level down, we can specify the system in terms of the pro-
cesses which service components run, and the attribute-based dynamic identification of ensembles as
discussed in section 3.2.3; this activity is part of the programming activity in the EDLC.

Analysis of Denial-Of-Service Attacks In the verification step of the EDLC, we have investigated
the problem of distributed Denial-of-Service (dDoS) attacks which are relevant for all connected sys-
tems. Two formal patterns have been identified which can serve as defenses against such attacks (this
method is described in [CLM+13]).

Verification of Routing Procedures in Pastry The network layer of the science cloud implementa-
tion, Pastry, has been modeled in κNCPi. The specific emphasis here has been put on formalizing the
conditions for ensuring that messages reach their target within Pastry; again, this technique is part of
the verification phase in the EDLC. It is described in [BMS15].

Secondly, we discuss the runtime cycle.

Performance Monitoring and Prediction with SPL On the runtime side of the EDLC, the interac-
tions of running ensembles and service components come into play; a key requirement is monitoring
which is the first activity in the runtime cycle. Monitoring and prediction regarding performance are
described in [BBG+15].

Supporting Mobile Nodes with jDEECo An interesting aspect of the autonomic cloud is that the
nodes may not be servers stored in a data center, but personal machines which may include mobile
nodes. This brings into play the dimension of spatial location, which is considered by the jDEECo
monitoring approach as discussed in section 3.2.4. In the EDLC, this affects again the monitoring
phase.

Cooperative Distributed Task Execution A cooperative approach to task execution by distributed
nodes in a cloud has has been investigated in a simulation approach, test-driving the awareness and
self-adaptation activities. This method is described in [CLLM+14].

3.3 Implementation

As identified in the previous sections, the cloud system is implemented in a peer-to-peer manner with
a heavy focus on being aware of changes in the available nodes and the load of each node.

On a technical level, our implementation is based on the existing peer-to-peer substrate Pastry
[RD01b] and accompanying protocols, and uses a gossip-style protocol for communication on the
application level. This is discussed in section 3.3.1. The SCP also uses the Zimory IaaS cloud platform
to start and stop virtual machines on demand as required for ensuring application uptime as well as
energy conservation (see section 3.3.2).

ASCENS 29

D7.4: Fourth Report on WP7 (Final) March 12, 2015

3.3.1 Implementing an Autonomic Cloud

The implementation is split into three layers: a network layer, which implements routing and message
passing along with network self-healing properties; a data layer which handles data storage, including
redundancy, and an application layer, which handles execution and fail-over of applications. The
layer-based organization is shown in Figure 12.

P2P / Message-Based Com.
 (Networking Layer)

Code and Data Storage
 (Data Layer)

App Execution
 (Application Layer)

App1 App2 ...

Pastry

PAST

Gossip
Communication

SCP UI

Adaptivity
Algorithm

Knowledge
Base

App
Engine

TCP/
IP

OSGi
Container

Redundant
Storage

Figure 12: Science Cloud Platform Implementation

On the network level, the nodes which form the science cloud need to know about one another
and be able to pass messages, either to single nodes (unicast), a group of nodes (multi- or anycast), or
all nodes (broadcast). Given that the network can potentially become large, it is advisable that not all
nodes need to know all other nodes. Furthermore, routing needs to be stable under adverse conditions
(i.e. nodes that are part of the autonomic cloud leave, or new nodes are added).

We use the existing protocol Pastry [RD01b] in the form of the FreePastry implementation [DHH+13]
as the basis of this layer, which is in turn based on standard networking protocols (i.e. TCP/IP). The
inner workings of Pastry are similar to that of classic Distributed Hash Tables (DHTs), that is, each
node is assigned a unique hash and nodes are basically organized in a ring structure, with appropriate
shortcuts for faster routing. The protocol has built-in network resilience (self-healing). These proper-
ties have been formally analyzed in [LMW11]. The SCP uses a gossip-style protocol for passing on
information about individual nodes, which works along the usual epidemic paths.

The second layer handles data. When an application is deployed, the code needs to be available
to all nodes which can possibly execute it; furthermore, application data needs to be stored in such
a way that resuming an application, after a node which ran it failed, is possible. We thus need data
storage with data redundancy, not only of immutable data (application code) but also of mutable data
(application data). Data is handled on top of Pastry using gcPAST, which is an implementation of
the PAST protocol [RD01a] with support for mutable data. PAST basically implements a DHT and
includes a data redundancy mechanism which works by keeping k copies of a data package in the
nodes surrounding the primary storage node (which is the one the data package hash is closest to).
Application code is stored as Java byte code, and the OSGi container is used to inject this code at
runtime into the Java virtual machine.

The final layer, and the one implementing the actual platform-as-a-service idea, is the application

ASCENS 30

D7.4: Fourth Report on WP7 (Final) March 12, 2015

layer. This layer first of all implements a Knowledge Base in the KnowLang [VH13] style which
keeps track of the knowledge about its own and all other nodes. An App(lication) Engine, again
based on OSGi, is responsible for starting and stopping applications in the form of OSGi bundles.
Finally, adaptivity is implemented by different roles (such as initiator or executor), based on the Helena
principles outlined above. Since applications can only run on some machines (based on requirements),
these must first be found in the network. Every user of the cloud runs (at least) one instance of an SCPi
and uses this instance both for deploying and using applications.

Deploying an application first means simply storing the executable code (as an OSGi bundle),
which is based on the primary storage node idea introduced above. The primary storage node assumes
an initiator role which is responsible for finding an executor based on the requirements of the appli-
cation and, once an executor is found, for monitoring its continued existence. If the executor fails,
another will take its place, preserving data of the application through redundant storage. Likewise, if
the initiator fails, another node (which is closest to the hash of the application) will take over.

3.3.2 Integrating Zimory IaaS

The company Zimory, an ASCENS partner, provides the Zimory Cloud Suite [Zim14], a full Infra-
structure-as-a-Service (IaaS) solution which facilitates end-to end management of the Virtual Machine
(VM) lifecycle: VMs can be created, started, killed, backed-up and destroyed via the Zimory Manage
component. Having such management of the VM lifecycle provides two main advantages: instanti-
ation of SCPs through the use of VMs and starting and stopping of VMs as needed (supporting the
”joining at will” principle in the Autonomic Cloud).

The Zimory platform provides the ability to store blueprints for VMs which are called appliances.
An appliance is a preconfigured virtual machine which can be deployed to the cloud in order to start
it; likewise, it can be undeployed. For the autonomic cloud, one such appliance was created which
includes the Science Cloud Platform installation which is triggered to automatically launch when the
VM is started.

The process of starting a new virtual machine and stopping those no longer needed for energy
conservation is integrated into the core SCP logic. A fallback mechanism is triggered if none of the
available non-virtual SCPs is able to execute an application — whether due to lack of nodes which
can handle the application requirements or because the load of existing nodes is too high. In this
case, the initiator contacts the Zimory platform and creates a new deployment from the preconfigured
appliance discussed above. As soon as the appliance is started, the SCP running on it will register
with the autonomic cloud and take over execution of the application. Likewise, integration of a virtual
machine shutdown is achieved by monitoring apps running on virtualized machines and checking for
possible non-virtualized executors, which are chosen over virtualized ones when available. Again, idle
virtualized nodes are instructed to shut down via the API.

Both processes are integrated into the role-based mechanism of starting and stopping apps with
two new roles (DeploymentCreator and DeploymentStopper) [Ale].

The use of the Zimory infrastructure within the project has been very valuable to Zimory as a
validation of the functional use cases covered in the product and helped adding new functionality to
be used by Zimory’s customers. An example of this new functionality has been a metadata distribution
system, which includes a properties distribution system and a configuration management system. This
was required by the project in order to configure the VMs deployed in the infrastructure with the SCP
software as discussed in this section, and place it properly within the infrastructure, being able to
allocate new nodes.

ASCENS 31

D7.4: Fourth Report on WP7 (Final) March 12, 2015

Figure 13: Science Cloud Platform Demo — Step 1

Figure 14: Science Cloud Platform Demo — Step 2ASCENS 32

D7.4: Fourth Report on WP7 (Final) March 12, 2015

Figure 15: Science Cloud Platform Demo — Step 3

3.4 Evaluation and Validation

As shown in the previous sections, many ideas of the ASCENS project have been integrated into the
working implementation of the Science Cloud Platform, and vice versa. A full prototype implemen-
tation has been created which makes use of the Zimory IaaS and can be instrumented for test-driving
and investigating the supported functionality.

For allowing researchers as well as students to interact with the software, a monitoring server has
been created which visualizes the network structure, which, being based on peer-to-peer principles,
can not otherwise be observed in a centralized manner. The monitoring server includes options for
instrumenting the network to produce particular results, for example, forcing the creation of a new
virtual machine.

As an example, we show how the start of a virtual machine is triggered in a network and then
used for executing an application. The first step is shown in Figure 13, which shows a Pastry ring of
eight nodes, each running one instance of the Science Cloud platform. The caption on the left shows
the meaning of the colors and shapes; in particular, there is no virtualized node at the moment and all
of the nodes are overloaded (CPU over 80% load, as shown by the red background in the CPU line).
Furthermore, the lower left shows a variety of buttons with which to instrument the platform.

The node 2D5EC1 in the lower center has the Initiator role for the application Exchange
(a collaboration platform), as well as the Main Storage role. The node has futhermore already
determined that no node in the network is able to execute this application and thus has instantiated
an instance of the Deployment Creator role which instructs the underlying Zimory platform to

ASCENS 33

D7.4: Fourth Report on WP7 (Final) March 12, 2015

start a new node.
A short time later, a new node is up and running and has been selected to run the application, as is

shown in Figure 14. As can be seen, the new virtualized node 96A591 is executing the application.
The figure also shows that the CPU load on node AEF29E has fallen below 80%, which the initiator
is bound to notice in a short while.

Since AEF29E is able to execute the application (based on the application requirements, and since
it is not overloaded) the virtualized node is no longer required. Thus, it is shut down and the application
execution is moved to the new node, as shown in Figure 15. In this example, the initiator node has
stayed the same.

3.5 Summary

The autonomic cloud case study has been used within ASCENS as a test case for an autonomic cloud,
i.e. a platform-as-a-service infrastructure intended to run customer applications in the presence of cer-
tain difficulties such as voluntarily provided nodes. In this report, we have detailed several interesting
hand-picked results of applying ASCENS methods to the cloud. Our implementation of an autonomic
cloud uses these results, thus showing their applicability in a working system.

The Science Cloud Platform (SCP), including the monitor server, is available on the ASCENS web
site for download2. Since some of the demonstration functionality requires the Zimory platform, we
have also created videos showing the starting and stopping of virtual machines within the visualization;
these are available online as well.

2http://www.ascens-ist.eu/cloud/

ASCENS 34

http://www.ascens-ist.eu/cloud/

D7.4: Fourth Report on WP7 (Final) March 12, 2015

4 E-mobility

Electro-mobility (e-mobility) is one of the most promising technologies being considered by automo-
tive industry as an alternative to traditional approaches. Due to the restrictions posed by the batery
capacity a range of assistive services need to be provided to the users in order compensate the defi-
ciencies posed by relatively short distances the vehicels can reach without re-charging. The e-mobility
case study provides a novel example of a relevant industry application within the ASCENS framework,
featuring numerous optimizations of drivers’ routes and parking-lots allocations. An overview of the
system design is given which describes how e-mobility is conceptualized and then transformed using
the ASCENS ensemble development life cycle (EDLC) into a distributed autonomic component-based
software system. The system requirements engineering is based on the state-of-the-affairs (SOTA)
approach and the invariant refinement method (IRM) which are described in the ”Major awareness/au-
tonomic issues” section. Regarding the implementation and deployment of the system, a dependable
emergent ensembles of components (DEECo) approach is utilized. The DEECo components and en-
sembles are coded and deployed using the Java-based jDEECo runtime environment. The runtime
environment integrates and validates the multi-agent transport simulation tool (MATSim), which is
used to predict the effects of the physical interactions of users, vehicles and infrastructure resources.
jDEECo handles multiple MATSim instances to allow for different belief states between components
and ensembles.

4.1 Overview

The e-mobility case study deals with challenges from the scenario where people travel with privately
owned electric vehicles (EVs) in a resource constraint road environment. In particular, it addresses the
dual problem of decision making in transportation systems, where drivers use predictive environment
information (PEI), such as traffic information and car park availability, to make travel decisions (e.g.
route choice, parking choice), and in return, these decisions influence the PEI on which the drivers
base their decisions. The challenges give rise to the various ASCENS approaches, which collectively
enable an efficient coordination of travelers and resources. The scenario is referred to as electric
vehicle travel problem (EVTP).

The transportation system involves a large number of nodes and complex interactions between
them. It is open-ended, not allowing for a precise definition of the number of vehicles entering and
exiting a reference area. Most importantly, the system involves highly dynamic decision making and
information distribution, with the additional challenge that decisions and information are mutually
dependent (dual problem). All of these characteristics give rise to important software design chal-
lenges, which include the question of knowledge distribution, the efficient handling of timeliness of
information and the management of different belief states of the entities of the system.

The software design challenges can be addressed in different ways, comprising (1) a centralized
approach, where a single coordinator controls the system behavior of all nodes, and (2) a decentralized
agent-based approach, where reasoning capabilities are distributed across software agents and where
system states are emerging from the interaction of the agents.

In a first step, a centralized system was implemented; although the approach was well-suited for
simulation purposes, it was not real-world applicable, which was due to its scaling characteristics over
the large number of nodes in the real-world traffic environment. In a second step, an agent-based sys-
tem was developed which is described in [HWB+11]. This approach produced very promising results,
but showed that agent-based systems require ensemble engineering approaches, where components
with congruent goals group in ensembles in order to coordinate knowledge exchange on a group-level.
The ASCENS approach is the third step, which addresses the shortcomings of the aforementioned
centralized and decentralized approaches.

ASCENS 35

D7.4: Fourth Report on WP7 (Final) March 12, 2015

4.1.1 e-Mobility Concept

A transportation system can be understood as a market where infrastructure resources reflect the supply
side and people that take advantage of the infrastructure resources represent the demand side. In
general, transportation systems allow for modal shifts. This study considers the case of individual
motorized travel; more specifically, it assumes that people exclusively travel with privately owned
electric vehicles.

These electric vehicles are competing for infrastructure resources of the transportation system.
Infrastructure resources such as parking lots, roads and charging stations are constrained thereby im-
posing restrictions on travel demand. The cost for a vehicle to use infrastructure resources is variable.
It may change with scale, time and location or dynamically depend on the market situation. Situations
exist in which demand exceeds resource availability, at least locally. The ASCENS approach addresses
these situations both from a driver and operator perspective.

Departing from the local perspective of the driver, each driver has a set of appointments A =
{A1, . . . , An}, where each appointment is defined by a location Li, a starting time it

A
S and a duration

id
A. A route alternative from appointment Ai to appointment Ai+1 is denoted as iRD. It connects

the departure location Li and the destination location Li+1 and is defined in terms of time and energy
consumption. The departure time is denoted as it

D
S and the arrival time as it

D
E . The electric vehicle

(EV) battery level at departure is denoted as ie
D
S , while ie

D
E defines the battery energy level at the time

of arrival. The user must arrive in time at the appointment location, so it is required that it
D
E ≤ it

A
S .

The vehicle should never run out of energy, so that it is required that ieDE > 0. A charging event may be
scheduled during appointment duration. It is assumed that a set of charging stations exists, where each
one is defined by a name CSname. The number of available charging spots at a location L is defined
as SpotsNum. Given this notation, the local travel problem is presented in [MMH12, HZWS12].

Continuing from the local perspective of an infrastructure operator, each operator has individual
interests such as achieving a specific capacity usage or profit margin. Private operators of parking lots
(resp. car parks) and charging stations generally aim at maximum capacity usage. In order to achieve
their objective, they provide incentives such as specific price scales. In contrast, public road operators
want to avoid traffic congestion and therefore avoid limit capacity usage. Their objective is a road
capacity usage around the free flow limit.

From a group-level perspective, individually optimal solutions of the drivers and infrastructure op-
erators may conflict, giving rise to a local-global optimization of the transportation system. As human
behavior is not entirely deterministic, it cannot be expected that a transportation system is fully con-
trollable, giving rise to contingency situations. State-of-the art approaches which handle local-global
optimization and contingency situations have major drawbacks. First off on a functional level, they
do not provide adequate adaptation mechanisms to ensure goal satisfaction in contingency situations;
secondly, they do not effectively compromise the local traveler and global resource perspective; and
thirdly, they do not allow for different belief states amongst travelers or groups of travelers. On a
non-functional level, up-to-date approaches are not real-time capable and do not provide the means
to adequately cope with the failure of individual nodes. The ASCENS approach addresses the afore-
mentioned shortcomings of state-of-the art approaches through adequate architecture and logic design,
which is discussed in greater detail in the subsequent sections.

The key challenge of an ASCENS conceptualization is the identification of stakeholder goals, their
awareness and their adaptation capabilities. The main stakeholders of the system are drivers, vehicles,
and operators, encompassing both public road operators and private parking (resp. charging station)
operators.

Drivers are assumed to travel with private vehicles only. A driver and a vehicle are therefore
treated as a single stakeholder, denoted in the following as a vehicle. A vehicle is aware of its current
position, battery energy level, current traffic information, route alternatives, points-of-interest (e.g.

ASCENS 36

D7.4: Fourth Report on WP7 (Final) March 12, 2015

parking lots, charging stations) and the traveler’s sequence of appointments A = {A1, . . . , An} and
the adherence thereof. Adaptation actions of the vehicle comprise a departure time change, route
change and a change of parking lot and charging strategy.

A road operator manages a predefined reference area. Given the reference area, the operator is
aware of the current traffic level, the projected travel demand, the vehicles entering and leaving the
boundaries of the reference area and their alternative travel options. Adaptation actions of the road
operator comprise of road pricing and requesting vehicles to change plans which implies choosing a
different route out of the vehicle’s set of route alternatives.

A parking operator (resp. charging station operator) manages a predefined set of entities. Given
the predefined set, the operator is aware of its capacity, the current capacity usage, future requests,
the vehicles entering and leaving the car parks (resp. charging stations) and their alternative parking
(resp. charging) options. Adaptation actions of the parking operator (resp. charging station operator)
comprise of pricing changes and requesting vehicles to change plans; this implies choosing a different
parking lot (resp. charging station) out of the vehicle’s set of alternatives.

4.1.2 e-Mobility Development Life Cycle

The design of distributed, autonomous software systems is cross-inspired from multiple disciplines,
comprising of agent-based systems (e.g. [Woo09], [WJ95]), control engineering (e.g. [Gee04]), ar-
tificial intelligence (e.g. [RN02]) and operations research. In the view of these existing approaches,
this section presents a conceptual discussion of the design stage of a distributed, autonomous software
system, explaining both EVTP and ASCENS specific concepts and highlighting the links between
them.

ASCENS provides a general framework for the structured design and development of autonomous,
distributed systems, in particular their self-awareness and self-adaptation properties. The framework
is denoted as ensemble development life cycle (EDLC) and is discussed in [BDG+13]. The EDLC
comprises of two loops: a design loop which describes the offline engineering tasks, and a runtime
loop which defines the online engineering tasks. The design loop is an iterative process, departing
from requirements engineering, going on to modeling and programming and arriving at verification
and validation. The design loop results in system deployment, giving rise to the runtime loop. The run-
time loop includes the activities corresponding to runtime monitoring, awareness and self-adaptation.
The engineering activities in the design loop and the runtime loop are distinguished from traditional
approaches in that they focus on the aspects of self-awareness and self-adaptation.

Self-awareness and self-adaptation enable the system to continuously infer decisions that guaran-
tee goal adherence. In tangible terms, self-awareness describes the capability to interpret information
with respect to a given goal and self-adaptation describes the capability to manipulate knowledge or
execute real-world actions in order to achieve the goal. Self-awareness and self-adaptation define
knowledge processes, namely, perception, communication and reasoning processes. Knowledge pro-
cesses occur at two levels: the intra-component and the inter-component level. The intra-component
level defines processes within the component. The inter-component level defines processes between
the components. An ASCENS ensemble can technically be understood as an inter-component process
which controls the knowledge exchange between its members; it thereby manipulates the belief states
and decisions of its members.

Given this context, the objective of the design stage is two-fold: (1) design an architecture of
components and ensembles that allows for efficient knowledge distribution, and (2) design reasoning
that allows the knowledge processes to efficiently manipulate the environment in order to reach the
system goals.

ASCENS 37

D7.4: Fourth Report on WP7 (Final) March 12, 2015

4.2 Major awareness/autonomic issues

As described in the EDLC [BDG+13] the major awareness/autonomic issues need to be defined in
early requirements analyses phase. In e-mobility case study two major approaches were applied:
SOTA and IRM. The SOTA is a high-level approach, which is inspired from dynamic systems mod-
eling and IRM is a low-level approach, which is inspired from goal-refinement. This section demon-
strates how the combination of the two approaches improves the specification and modelling of the
system, featuring awareness and autonomic behaviour.

4.2.1 High-level Requirements Engineering with SOTA

SOTA is designed for goal-oriented requirements engineering of self-adaptive systems. It adapts a dy-
namical systems modeling approach to model feedback loops, which are used to control service com-
ponent (SC) goal achievement in autonomic distributed systems [BDG+13]. Conventional approaches
to model and control systems use closed-form models, which comprise of a set of differential equa-
tions that are solved at every time step in order to minimize the error between the actual behavior and
the intended behavior of a system. If a closed-form model does not exist, as is the case for complex
agent-based systems, conventional approaches do not hold.

In SOTA a state space S is defined by the state variables of the SCs and the operational envi-
ronment. Given the state space representation, a SC goal is described by a point in the state space,
whereby a SC evolution is described as a vector in the state space. The evolution of SCs has to satisfy
constraints, which are denoted by utilities. The optimal SC evolution over time satisfying all utilities
is defined by the goal trajectory U . A SC is activated to strive for a goal, respectively follow U , once a
precondition is met, which is defined as a region in S. Self-adaptation actions are initiated once the de-
viation of a SC trajectory from the optimal goal trajectory U exceeds a critical threshold, respectively
satisfies an adaptation condition.

Self-adaptation is defined by the feedback control loops, which define a set of actions that allow
a component to reach its goal. A complex system inherits multiple interacting control loops. They
support adaptation mechanisms either on an intra-loop level or an inter-loop level. Intra-loops are en-
capsulated within a component. Inter-loops coordinate adaptation across components, whereby three
mechanisms of inter-loop coordination are distinguished, namely, hierarchy, stigmergy and direct in-
teraction. Feedback control loops can be classified by structural properties and assigned to categories,
denoted by patterns, giving rise to a taxonomy of hierarchical patterns as presented in [CPZ11b].

Requirements engineering with SOTA involves two major tasks: first, the identification of the di-
mensions of the SOTA state space, and second, the design of feedback control loops by the help of the
mentioned patterns. The key adaptation patterns are conceptually described in [PCZ13]. For selected
patterns, Abeywickrama et al. [AHZ15] presented both platform-independent UML template models
and platform-independent Java template models. In particular, the authors describe two SC related
patterns, namely the autonomic SC pattern and the parallel AMs SC pattern, and one ensemble related
pattern, namely the centralized service component ensemble (SCE) pattern. The autonomic SC pattern
inherits one autonomic manager (AM) that implements one local feedback loop, thereby controlling a
single adaptation aspect of the SC. The parallel AMs SC pattern comprises multiple autonomic man-
agers, each controlling a local adaptation aspect of the SC. As an example, Figure 16 shows the UML
pattern template model of the parallel AMs SC pattern and Figure 17 presents the respective Java
pattern template model. For a detailed description of the remaining template models, the reader may
refer to [AHZ15]. As previously mentioned, the interaction of the feedback loops is coordinated with
inter-loop mechanisms either through hierarchy, stigmergy or direct interaction. The centralized SCE
pattern uses a hierarchical control structure to coordinate the interaction of multiple supervised SCs.
It employs a single super autonomic manager (SAM), implementing a single global feedback loop.

ASCENS 38

D7.4: Fourth Report on WP7 (Final) March 12, 2015

Figure 16: UML pattern template model of the parallel AMs SC pattern [AHZ15].
ASCENS 39

D7.4: Fourth Report on WP7 (Final) March 12, 2015

Figure 17: Java pattern template model of the parallel AMs SC pattern [AHZ15].

4.2.2 Low-level Requirements Engineering with the Invariant Refinement Method

The invariant refinement method (IRM), which is presented in [KBP+13], transforms high level sys-
tem goals into low-level concepts of system architecture, namely components, component processes
and ensembles of the system. IRM builds a hierarchy of invariants through gradual refinement,
whereby invariants describe the desired state of the system-to-be as a function of time [KBP+13,
BDG+13]. SOTA and IRM are partially redundant and partially complementary. This fact can be
exploited during requirements engineering, as will be discussed later.

The IRM approach defines an invariant as a condition on the knowledge valuation of a set of com-
ponents that captures the operational normalcy to be maintained by the system-to-be [KBP+13]. In
dynamical systems engineering, an invariant represents a control objective. In terms of system con-
ceptualization, it reflects a goal. IRM departs from the most general system goal, as defined by the
conceptualization. The decomposition process subdivides parent invariants into mutually exclusive
and commonly exhaustive child invariants. The invariants belong to either one of three categories:
(1) process invariants which describe within-component processes, (2) exchange invariants which de-
scribe between-component processes, respectively ensemble processes, and (3) high-level invariants
(e.g. general invariants, present-past invariants) which do not yet define a low-level process. A process
invariant can be understood as an intra-component feedback loop that manipulates the component’s
knowledge. An exchange invariant can be understood as an inter-component feedback loop, which
controls the adaptation mechanisms across multiple components. The decomposition process termi-

ASCENS 40

D7.4: Fourth Report on WP7 (Final) March 12, 2015

Figure 18: IRM system level graph of the e-mobility scenario

nates once all high-level invariants are represented by either process invariants or exchange invariants.
As a side effect of the decomposition process, assumptions are defined. An assumption describes an
environment condition that is to be guaranteed but is not explicitly controlled by the processes. The
resulting IRM decomposition graph of the e-mobility scenario is shown in Figure 18. Adherence to
child invariants guarantees adherence to parent invariants. In the limit, adherence to leaf invariants
guarantees all high-level system goals to be fulfilled.

4.2.3 Combining SOTA and IRM

Finally, the question remains to be answered how the combination of the two approaches, namely the
requirements engineering with SOTA and the top-down requirements engineering with IRM, improves
the design of autonomic distributed systems.

Recall that in accordance with a dynamical systems engineering perspective, SOTA uses a state
space representation of the system to model both within-component and between-component feedback
loops. Within-component feedback loops are represented by AMs and between-component feedback
loops are represented by SAMs. The design of the feedback loops is supported by a patterns catalog
of adaptation templates. The resulting hierarchy of feedback loops describes the complex interplay
of adaptation actions in the system. In terms of IRM, AMs represent functional within-component
processes, while SAMs represent functional between-component (resp. ensemble) processes. The
modeled processes can be most easily compared at the Java/jDEECo level. Discrepancies in the pro-
cesses, modeled by IRM and SOTA, point at potential modeling errors.

4.3 Implementation details

The result of the iterative requirements engineering loop which involves SOTA and IRM is a low-level
system specification. The low-level description of the system architecture is formulated in terms of
the DEECo [BGH+13]. It is a component model which consists of (1) DEECo components and (2)

ASCENS 41

D7.4: Fourth Report on WP7 (Final) March 12, 2015

1 component Vehicle features AvailabilityAggregator:
2 knowledge:
3 batteryLevel = 90%,
4 position = GPS(...),
5 calendar = [POI(WORKPLACE, 9AM−1PM), POI(MALL, 2PM−3PM), ...],
6 availabilities = [],
7 plan = { route = ROUTE(...), isFeasible = TRUE }
8 process computePlan:
9 in plan.isFeasible, in availabilities, in calendar, inout plan.route

10 function:
11 if (!plan.isFeasible) plan.route← planner(calendar, availabilities)
12 scheduling: periodic(5000ms)
13 ...
14 ensemble UpdateAvailabilityInformation:
15 coordinator: AvailabilityAggregator
16 member: AvailabilityAwareParkingLot
17 membership:
18 ∃ poi ∈ coordinator.calendar:
19 ‘ distance(member.position, poi.position) ≤ THRESHOLD &&
20 isAvailable(poi, member.availability)
21 knowledge exchange:
22 coordinator.availabilities← { (m.id, m.availability) | m ∈ members }
23 scheduling: periodic(2500ms)

Figure 19: Example of DEECo SCs and SCEs in e-mobility modeling [BDG+13].

DEECo ensembles. A DEECo component is defined by three elements: first, local component knowl-
edge, second, knowledge processes that operate on the local component knowledge, and third, inter-
faces which define the subsets of the local component knowledge that are exposed once the component
becomes part of an ensemble. A DEECo knowledge process implements an IRM process invariant.
A DEECo ensemble is defined as a process that encapsulates the communication between the compo-
nents of an ensemble. A DEECo ensemble implements the IRM exchange invariant. The assignment
of components to an ensemble is controlled via a membership condition. While the knowledge pro-
cesses of a component control local component knowledge, an ensemble controls the group-level
knowledge exchange between its members and its coordinator. An example of DEECo components
and DEECo ensembles is shown in Figure 19.

As described in [BDG+13], the reification of the DEECo component model in Java is called
jDEECo. Components are intuitively represented as annotated Java classes. Component knowledge
is mapped to class fields. Component processes are mapped to class methods. Appropriately anno-
tated classes represent DEECo ensembles. Once the necessary components and ensembles are coded,
they are deployed using the jDEECo runtime framework, which takes care of process and ensemble
scheduling, as well as low-level distributed knowledge manipulation. Figure 20 shows a simplified
description of the jDEECo class fields (component knowledge) and class methods (component pro-
cesses) of the e-mobility scenario. Figure 21 illustrates a jDEECo ensemble.

4.4 Evaluation and validation

To evaluate the ASCENS approach, we have engineered the e-mobility case study based on the EDLC
design. This involved the use of SCEL and SCLP for specification of processes and the optimization
problem (described already in D7.2 and D7.3), the use of SOTA and IRM to model the goals of the case
study and means of their accomplishment, and the use of DEECo/jDEECo to provide implementation
constructs. The e-mobility specific implementation of the jDEECo components (e.g. PLCS compo-
nent) and the jDEECo ensembles (e.g. vehicle-PLCS SAM) is shown in Section 4.3. The e-mobility
case study further employs the jDEECo runtime environment to handle monitoring, awareness and

ASCENS 42

D7.4: Fourth Report on WP7 (Final) March 12, 2015

1 @Component
2 public class PLCS {
3 public LatLon location;
4 public Map<String, ReservationRequest> reservationRequests;
5 public Map<String, ReservationResponse> reservationResponses;
6 public Map<Long, Integer> occupancy;
7 public Integer maxCapacity;
8 public String id;
9 ...

10 /∗∗
11 ∗ Processes reservation requests and produce appropriate reservation
12 ∗ responses. As all the vehicles follow the optimal assignment of the
13 ∗ PLCSSAM it is not possible to overbook the PLCS. Nevertheless the check
14 ∗ is performed and the appropriate response is generated.
15 ∗
16 ∗ In the ”occupancy” knowledge we store the map that translates the hourly
17 ∗ intervals into the space occupancy. If the request cannot be satisfied
18 ∗ (i.e. the maximum capacity has been reached for the requested time) the
19 ∗ negative response is created.
20 ∗/
21 @Process
22 @PeriodicScheduling(period = DEFAULT PERIOD)
23 public static void processReservations(
24 @In(”id”) String id,
25 @In(”reservationRequests”) Map<String, ReservationRequest> reservationRequests,
26 @InOut(”reservationResponses”) ParamHolder<Map<String, ReservationResponse>>
27 reservationResponses,
28 @InOut(”occupancy”) ParamHolder<Map<Long, Integer>> occupancy,
29 @In(”maxCapacity”) Integer maxCapacity) {
30 ReservationResponse response;
31 for (ReservationRequest rr : reservationRequests.values())
32 if (!reservationResponses.value.containsKey(rr.id)) {
33 //Generate response
34 response = new ReservationResponse(rr.id, book(rr.fromHour,
35 rr.toHour, occupancy.value, maxCapacity), rr.vehicleId, id);
36 reservationResponses.value.put(rr.id, response);
37 System.out.println(id + ” reservation response : ” + response);
38 }
39 }
40 ...
41 }

Figure 20: Description of a ParkingLotChargingStation (PLCS) component in jDEECo, where com-
ponent knowledge is represented by class fields and component processes are represented by class
methods.

self-adaptation during runtime. This is done by means of DiSL and SPL as described in D4.5.
jDEECo embeds a Multi-Agent Transport Simulation (MATSim) which is an execution environ-

ment implementing the physical interaction of drivers, vehicles and infrastructure resources. MATSim
implements general concepts of transportation modeling, which is briefly discussed in Section 4.4.1.
The coupling of jDEECo and MATSim is presented in Section 4.4.2.

4.4.1 MATSim Transportation Modeling

MATSim is a microscopic traffic simulator. It is used to simulate individual travel patterns and predict
aggregate travel demand. It is based on the underlying theory of transportation science which is
discussed in [Cas09] and [HBAB+03]. MATSim specific publications can be found in [MAT14].

MATSim simulates physical interactions of drivers, vehicles and infrastructure resources. In MAT-
Sim, a driver is represented as a software agent, which inherits travel preferences and a daily activity
chain. A driver agent schedules and executes a day plan, which is defined as a sequence of travel stages

ASCENS 43

D7.4: Fourth Report on WP7 (Final) March 12, 2015

1 @Ensemble
2 @PeriodicScheduling(period = 1000)
3 public class VehiclePLCS {
4

5 @Membership
6 public static boolean membership(
7 @In(”coord.reservationRequest”) ReservationRequest reservationRequest
8 @In(”member.id”) String plcsId) {
9 if (reservationRequest == null || reservationRequest.plcsId == null) return false;

10 return reservationRequest.plcsId.equals(plcsId);
11 }
12

13 @KnowledgeExchange
14 public static void exchange(
15 @In(”coord.id”) String vehicleId,
16 @In(”coord.reservationRequest”) ReservationRequest reservationRequest
17 @InOut(”coord.reservationResponse”) ParamHolder<ReservationResponse>
18 reservationResponse
19 @In(”member.reservationResponses”) Map<String, ReservationResponse>
20 plcsReservationResponses,
21 @InOut(”member.reservationRequests”) ParamHolder<Map<String, ReservationRequest>>
22 plcsReservationRequests) {
23 plcsReservationRequests.value.put(vehicleId, reservationRequest);
24 reservationResponse.value = plcsReservationResponses.get(reservationRequest.id);
25 }
26 }

Figure 21: Description of a jDEECo ensemble, exchanging data between a vehicle and a PLCS.
The vehicle transfers the reservation request to PLCS’s knowledge. The PLCS transfers the request
response to the vehicle’s knowledge.

(e.g. walking stage, driving stage) that connect the daily activity chain. Driver decisions represent the
demand side of transportation, while infrastructure resources reflect the supply side.

Driver decisions produce a demand for infrastructure resources (e.g. road, parking space, charging
station). The ratio of supply and demand influences the cost of resource usage (e.g. traffic induced
travel time, parking cost), and hence, assigns a utility to driver decisions. Drivers generally aim to find
the set of decisions that maximize utility.

MATSim addresses the dual problem of decision making, where drivers use information about
the transportation network (e.g. traffic information, parking fee) to make travel decisions (e.g. route
choice, parking choice), and in return, these decisions influence the state of the transportation network.
MATSim employs an optimization loop to solve the dual problem of transportation. In a first step,
agents execute day plans. This produces a travel demand, which for a given supply, determines the
cost of resource usage. In a second step, a scoring module computes the generalized cost of the set of
travel decisions. In a third step, agents modify travel decisions in order to minimize the generalized
cost of travel (resp. maximize the utility). The set of actions of an agent comprises of (i) shifting
departure time, (ii) changing travel mode and (iii) changing route. Step 1-3 are iteratively executed
until an equilibrium is reached. The loop of optimization is executed in every simulation step.

The e-mobility case study requires several extensions to MATSim. First, mode choice is con-
fined to electric vehicle travel. Second, the optimization loop additionally respects parking choice
and charging station choice. Third, vehicles consume energy and they are range restricted, which
introduces a need to monitor and manage vehicle energy budgets.

ASCENS 44

D7.4: Fourth Report on WP7 (Final) March 12, 2015

Figure 22: Coupling of jDEECo and MATSim.

4.4.2 Integration of jDEECo and MATSim

The jDEECo runtime framework integrates MATSim in order to simulate the states of the traffic en-
vironment (e.g. road traffic, parking space availability) and monitor the states of the components, in
particular, the state of the vehicle component (e.g. battery capacity, location). MATSim information
can be grouped into two categories: (1) current information xs(t0), capturing the state of the traffic
system at the current time slice t0, and (2) predictive information xs(t1), describing the state of the
traffic system at any consecutive time slice ti, with i > 0 and i ∈ N.

In case of the (1) current information, jDEECo connects all components to an instance of MATSim
(see Figure 22). Internally, each jDEECo component is reflected in MATSim by a dedicated instance
of MATSim’s mobility agent (denoted as “jDEECo agent” in the figure).

As for (2) predictive information, the prediction can be understood as a function f(xs(t0), ti, A),
which maps the current state of the traffic system xs(t0) to a future state ti, given a set of actions
A, thereby describing the effects of current actions. The particular ASCENS characteristics allow
for different perceptions of the same current information xs(t0), reflecting a different belief of the
current system state. The particular ASCENS characteristics also allow for different future beliefs
xs(t1), given the same current belief. Consider an example, where a first component uses a prediction
logic defined by f1(xs(t0), ti, A), which differs from the prediction logic f2(xs(t0), ti, A) of a second
component, thereby predicting a different effect from the same set of actions. In order to account for
component specific belief states, each jDEECo component contains a separate instance of the MatSim
simulation.

In concluding, MATSim is used to predict the effects of the physical interactions of users, vehicles
and infrastructure resources. jDEECo assigns MATSim instances to jDEECo components and handles
these instances in a way that allows for different belief states between components and potentially
synchronized belief states within ensembles.

4.5 Summary

The e-mobility case study in ASCENS provided a novel example of a relevant industry application.
A conceptualization of the e-mobility case study was shown and was used as a basis for the applica-
tion of the EDLC approach for distributed autonomic software systems. The overall use of ASCENS
concepts, methods and tools specifically tailored for development of autonomic component ensembles

ASCENS 45

D7.4: Fourth Report on WP7 (Final) March 12, 2015

allowed for seamless and integrated requirements engineering, modeling, and implementation con-
nected to runtime aspects of monitoring and self-awareness. The combined approach of this study
further provided a novel method for the simulation of physical interactions between users, e-vehicles
and infrastructure resources in a decentralized ensemble-based manner.

ASCENS 46

D7.4: Fourth Report on WP7 (Final) March 12, 2015

5 Conclusions

In the fourth project year the case studies work package has focused on final implementation and
validation of the application scenarios. According to the work plan, this year achievements are in (1)
integration of ASCENS technology in deploying the ensemble development lifecycle for each of the
application scenarios and (2) in separate deployment of the individual case studies.

Integration of ASCENS Technology

Case study work package has been the place were the ASCENS technology was tested and integrated.
All the ASCENS tools were separately tested in a theoretical context, or using single problems from
the case studies domains. Once fully tested, the tools were applied on a large scale practical scenarios
from the ASCENS case studies [SMK13, AS15]. The table 1 list the major ASCENS tools, as they
were used within each of the case study and according to the EDLC (Ensemble Development Life
Cycle).

EDLC Phase Swarm Robots Cloud computing E-Mobility
Requirements Engi-
neering

SOTA, Gem, POEM Knowlang, IRM simSOTA, IRM

Modeling/ Program-
ming

SCEL, jRESP, Poem SOTA, SCEL,
KnowLang

SCEL, SCLP

Verification/ Valida-
tion

BIP, jRESP jRESP jDEECO

Deployment ARGoS SCP SPL, Java, Zi-
mory

jDEECo. Java, Mat-
Sim

Monitoring ARGoS, AVI Plug-In
Tool

Zimory, SCP jDEECO/DiSL/SPL
MatSim

Awareness POEM, ARGoS, AVI SCP jDEECo
Self-Adaptation ARGoS, AVI, POEM Zimory, SCP jDEECo, IRM
Feedback POEM SPL MatSim

Table 1: ASCENS tools used for the case studies development

The ASCENS tool repository with numerous deploymemnt examples plaid an important and dual
role: (1) tools were tested in a real and large scale application domain - proving a wide applicability
and a strong practical orientation of the ASCENS approach, (2) the end users and corresponding
industrial parties could see the benefits (and challenges) of a fully scientific approach to construct and
deploy large practical systems, insuring their reliable and correct functioning.

Implementation and Validation

Implementation and validation plaid an important role not only in this work package but in the overall
project work. None of the ASCENS results stop short by formal specification. Even smaller trails and
experiments were implemented and validated towards initial specification. In the case of ASCENS
major demonstrator scenarios, namely sawrm robotics, science cloud and e-mobilty, each scenario has
been implemented using appropriate implementation tools and validated for its correct execution and
fulfillment of functional and non functional properties.

ASCENS 47

D7.4: Fourth Report on WP7 (Final) March 12, 2015

Impact and Further Uses

The ASCENS results and methodology had a significnt impact on the practical and industrial appli-
cation domain. The complex parctical problems have not only be solved, but the resulting solutions
have been thoroughly analyzed and verified using rigorous formal methods.

A wider significance and influence of the ASCENS outcomes is expected also in other application
domains. Namely, the ASCENS generic results are applicable in any areas where autonomic control is
needed. Further exploitation activities like planned summer school and publication of project results
at prestigious scientific journals and conferences should re-enforce already well known ASCENS
methodology. In that respect the achieved cases study demonstrators could be used as guidelines
how to succesfully apply the ASCENS technology.

References

[AHZ15] D. B. Abeywickrama, N. Hoch, and F Zambonelli. Engineering and implementing soft-
ware architectural patterns based on feedback loops. International Journal for Parallel
and Distributed Computing, Special Issue on Enabling Technologies for Collaboration,
to appear:19, 2015.

[Ale] Alexander Dittrich. Integration einer Virtualisierungslösung in Peer-to-Peer Cloud Com-
puting. Bachelor Thesis, Ludwig-Maximilians-Universität München, 2014.

[AS15] Dhaminda Abeywickrama and Nikola Serbedzija. Monitoring and visualizing adapta-
tion of autonomic systems at runtime. In The 30th ACM/SIGAPP Symposium On Applied
Computing, SAC’15, 2015, Salamanca, Spain, April 2015, 2015.

[ATS04] Stephanos Androutsellis-Theotokis and Diomidis Spinellis. A survey of peer-to-peer
content distribution technologies. ACM Comput. Surv., 36(4):335–371, December 2004.

[BBG+15] Lubomir Bulej, Tomas Bures, Ilias Gerostathopoulos, Vojtech Horky, Jaroslav Keznikl,
Lukas Marek, Max Tschaikowski, Mirco Tribastone, and Petr Tuma. Supporting Per-
formance Awareness in Autonomous Ensembles. In Martin Wirsing, Matthias Hölzl,
Nora Koch, and Philip Mayer, editors, Software Engineering for Collective Autonomic
Systems: Results of the ASCENS Project, volume 8998 of Lecture Notes in Computer
Science. Springer Verlag, Heidelberg, 2015.

[BBHK13] Lubomı́r Bulej, Tomáš Bures, Vojtčch Horký, and Jaroslav Keznikl. Adaptive deploy-
ment in ad-hoc systems using emergent component ensembles: vision paper. In Pro-
ceedings of the 4th ACM/SPEC International Conference on Performance Engineering,
ICPE ’13, pages 343–346, New York, NY, USA, 2013. ACM.

[BCG+15] Roberto Bruni, Andrea Corradini, Fabio Gadducci, Matthias Hölzl, Alberto Lluch La-
fuente, Andrea Vandin, and Martin Wirsing. Reconciling White-Box and Black-Box
Perspectives on Behavioural Self-Adaptation. In Martin Wirsing, Matthias Hölzl, Nora
Koch, and Philip Mayer, editors, Software Engineering for Collective Autonomic Sys-
tems: Results of the ASCENS Project, volume 8998 of Lecture Notes in Computer Sci-
ence. Springer Verlag, Heidelberg, 2015.

[BDG+13] Tomás Bures, Rocco De Nicola, Ilias Gerostathopoulos, Nicklas Hoch, Michal
Kit, Nora Koch, Giacoma Valentina Monreale, Ugo Montanari, Nikola B. Pugliese,

ASCENS 48

D7.4: Fourth Report on WP7 (Final) March 12, 2015

Rosario Serbedzija, Martin Wirsing, and Franco Zambonelli. A life cycle for the de-
velopment of autonomic systems: The e-mobility showcase. In 7th IEEE International
Conference on Self-Adaptation and Self-Organizing Systems Workshops, SASOW, 2013,
Philadelphia, PA, USA, September 9-13, 2013, 2013.

[BGH+13] Tomas Bures, Ilias Gerostathopoulos, Petr Hnetynka, Jaroslav Keznikl, Michal Kit, and
Frantisek Plasil. Deeco: An ensemble-based component system. In Proceedings of the
16th International ACM Sigsoft Symposium on Component-based Software Engineering,
CBSE ’13, pages 81–90, New York, NY, USA, 2013. ACM.

[BGH+15] Tomas Bures, Ilias Gerostathopoulos, Petr Hnetynka, Jaroslav Keznikl, Michal Kit, and
Frantisek Plasil. The Invariant Refinement Method. In Martin Wirsing, Matthias Hölzl,
Nora Koch, and Philip Mayer, editors, Software Engineering for Collective Autonomic
Systems: Results of the ASCENS Project, volume 8998 of Lecture Notes in Computer
Science. Springer Verlag, Heidelberg, 2015.

[BMS15] Roberto Bruni, Ugo Montanari, and Matteo Sammartino. Reconfigurable and Software-
Defined Networks of Connectors and Components. In Martin Wirsing, Matthias Hölzl,
Nora Koch, and Philip Mayer, editors, Software Engineering for Collective Autonomic
Systems: Results of the ASCENS Project, volume 8998 of Lecture Notes in Computer
Science. Springer Verlag, Heidelberg, 2015.

[BPBD12] Manuele Brambilla, Carlo Pinciroli, Mauro Birattari, and Marco Dorigo. Property-
driven design for swarm robotics. In Proceedings of the 11th International Conference
on Autonomous Agents and Multiagent Systems, pages 139–146. International Founda-
tion for Autonomous Agents and Multiagent Systems, 2012.

[Cas09] E. Cascetta. Transportation Systems Analysis - Models and Applications, 2nd edition.
Springer, 2009.

[CBK15] Jacques Combaz, Saddek Bensalem, and Jan Kofron. Correctness of Service Compo-
nents and Service Component Ensembles. In Martin Wirsing, Matthias Hölzl, Nora
Koch, and Philip Mayer, editors, Software Engineering for Collective Autonomic Sys-
tems: Results of the ASCENS Project, volume 8998 of Lecture Notes in Computer Sci-
ence. Springer Verlag, Heidelberg, 2015.

[CLLM+14] Alessandro Celestini, Alberto Lluch Lafuente, Philip Mayer, Stefano Sebastio, and
Francesco Tiezzi. Reputation-based cooperation in the clouds. In Jianying Zhou,
Nurit Gal-Oz, Jie Zhang, and Ehud Gudes, editors, Trust Management VIII, volume
430 of IFIP Advances in Information and Communication Technology, pages 213–220.
Springer Berlin Heidelberg, 2014.

[CLM+13] Jacques Combaz, Alberto Lluch Lafuente, Ugo Montanari, Rosario Pugliese, Matteo
Sammartino, Francesco Tiezzi, Andrea Vandin, and Christian von Essen. Software en-
gineering for self-aware sces. Technical report, ASCENS Project, 2013. Deliverable
JD3.1.

[CPZ11a] G. Cabri, M. Puviani, and F. Zambonelli. Towards a Taxonomy of Adaptive Agent-
based Collaboration Patterns for Autonomic Service Ensembles. In Proc. of CTS, pages
508–515. IEEE, May 2011.

ASCENS 49

D7.4: Fourth Report on WP7 (Final) March 12, 2015

[CPZ11b] G. Cabri, M. Puviani, and F Zambonelli. Towards a taxonomy of adaptive agent-based
collaboration patterns for autonomic service ensembles. In Collaboration Technologies
and Systems (CTS), 2011 International Conference on, pages 508–515, May 2011.

[DDF+14] Frederick Ducatelle, Gianni Di Caro, Alexander Förster, Michael Bonani, Marco
Dorigo, Stéphane Magnenat, Francesco Mondada, Rehan O’Grady, Carlo Pinciroli,
Philippe Rétornaz, Vito Trianni, and Luca Maria Gambardella. Cooperative navigation
in robotic swarms. Swarm Intelligence, 8(1):1–33, 2014.

[DHH+13] Peter Druschel, Andreas Haeberlen, Jeff Hoye, Sitaram Iyer, Alan Mislove, Animesh
Nandi, Ansley Post, Atul Singh, Miguel Castro, Manuel Costa, Anne-Marie Kermar-
rec, Antony Rowstron, Sitaram Iyer, Dan Wallach, Y. Charlie Hu, Mike Jones, Marvin
Theimer, Alex Wolman, and Ratul Mahajan. FreePastry. http://www.freepastry.org/,
March 2013.

[DLPT14] Rocco De Nicola, Michele Loreti, Rosario Pugliese, and Francesco Tiezzi. A Formal
Approach to Autonomic Systems Programming: The SCEL Language. TAAS, 9(2):7,
2014.

[Gee04] Hans Peter Geering. Regelungstechnik. Springer Berlin Heidelberg, 2004.

[Gra59] P.P. Grassé. La reconstruction du nid et les coordinations inter-individuelles chez belli-
cositermes natalensis et cubitermes sp. la théorie de la stigmergie: Essai d’interprétation
des termites constructeurs. Insects Sociaux, 6:41–83, 1959.

[HBAB+03] R. W. Hall, M. Ben-Akiva, M. Bierlaire, C. R. Bhat, F. S. Koppelman, L. Evans, A. J.
Cassidy, P. Ioannou, A. Bose, M. Papageorgiou, T. Puu, M. Beckmann, M. S. Daskin,
S.H. Owen, M. Florian, D. Hearn, L. Boding, V. Maniezzo, A. Mingozzi, T. G. Crainic,
c: Barnhart, A. M. Cohn, E. L. Johnson, D. Klabjan, G. L. Nemhauser, G. J. van Ryzin,
K. T. Talluri, P. Rietveld, P. Nijkamp, R. Arnott, and M. Kraus. Hanbook of Transporta-
tion Science. Springer US, 2003.

[HG15] Matthias Hölzl and Thomas Gabor. Reasoning and Learning for Awareness and Adapta-
tion. In Martin Wirsing, Matthias Hölzl, Nora Koch, and Philip Mayer, editors, Software
Engineering for Collective Autonomic Systems: Results of the ASCENS Project, volume
8998 of Lecture Notes in Computer Science. Springer Verlag, Heidelberg, 2015.

[HK14] Rolf Hennicker and Annabelle Klarl. Foundations for Ensemble Modeling - The Helena
Approach. In Specification, Algebra, and Software, volume 8373 of Lecture Notes of
Computer Science, pages 359–381. Springer, 2014.

[HKP+15] Matthias Hölzl, Nora Koch, Mariachiara Puviani, Martin Wirsing, and Franco Zam-
bonelli. The Ensemble Development Life Cycle and Best Practises for Collective Au-
tonomic Systems. In Martin Wirsing, Matthias Hölzl, Nora Koch, and Philip Mayer,
editors, Software Engineering for Collective Autonomic Systems: Results of the AS-
CENS Project, volume 8998 of Lecture Notes in Computer Science. Springer Verlag,
Heidelberg, 2015.

[HMS02] A. Howard, M.J. Matarić, and G.S. Sukhatme. Mobile sensor network deployment using
potential fields: A distributed, scalable solution to the area coverage problem. In Pro-
ceedings of the International Symposium on Distributed Autonomous Robotic Systems
(DARS), pages 299–308. Springer, New York, 2002.

ASCENS 50

D7.4: Fourth Report on WP7 (Final) March 12, 2015

[HWB+11] Nicklas Hoch, Bernd Werther, Henry P. Bensler, Nils Masuch, Marco Luetzenberger,
Axel Hessler, Sahin Albayrak, and Roland Y. Siegwart. A user-centric approach for effi-
cient daily mobility planning in e-vehicle infrastructure networks. In Gereon Meyer and
Juergen Valldorf, editors, Advanced Microsystems for Automotive Applications 2011,
VDI-Buch, pages 185–198. Springer Berlin Heidelberg, 2011.

[HZWS12] Nicklas Hoch, Kevin Zemmer, Bernd Werther, and Roland Y. Siegwart. Electric vehicle
travel optimization-customer satisfaction despite resource constraints. In 2012 IEEE
Intelligent Vehicles Symposium, IV 2012, Alcal de Henares, Madrid, Spain, June 3-7,
2012, 2012.

[KBP+13] Jaroslav Keznikl, Tomas Bures, Frantisek Plasil, Ilias Gerostathopoulos, Petr Hnetynka,
and Nicklas Hoch. Design of ensemble-based component systems by invariant refine-
ment. In Proc. of the 16th International ACM SIGSOFT Symposium on Component
Based Software Engineering, CBSE ’13, Vancouver, Canada, 2013. ACM.

[KMH14] Annabelle Klarl, Philip Mayer, and Rolf Hennicker. Helena@work: Modeling the sci-
ence cloud platform. In Tiziana Margaria and Bernhard Steffen, editors, Leveraging Ap-
plications of Formal Methods, Verification and Validation. Technologies for Mastering
Change, volume 8802 of Lecture Notes in Computer Science, pages 99–116. Springer
Berlin Heidelberg, 2014.

[KWA+01] Eric Korpela, Dan Werthimer, David Anderson, Jeff Cobb, and Matt Lebofsky.
Seti@home-massively distributed computing for seti. Computing in Science and En-
gineering, 3(1):78–83, 2001.

[LMW11] Tianxiang Lu, Stephan Merz, and Christoph Weidenbach. Towards verification of the
pastry protocol using tla+. In Formal Techniques for Distributed Systems, pages 244–
258. Springer, 2011.

[MAT14] MATSim. Multi-Agent Transport Simulation (MATSim), August 2014.

[MMH12] Giacoma Valentina Monreale, Ugo Montanari, and Nicklas Hoch. Soft constraint logic
programming for electric vehicle travel optimization. CoRR, abs/1212.2056:17, 2012.

[MPT13] Andrea Margheri, Rosario Pugliese, and Francesco Tiezzi. Linguistic Abstractions for
Programming and Policing Autonomic Computing Systems. In 10th International Con-
ference on Autonomic and Trusted Computing, UIC/ATC, pages 404–409. IEEE, 2013.

[NCD08] Shervin Nouyan, Alexandre Campo, and Marco Dorigo. Path formation in a robot
swarm. Swarm Intelligence, 2(1):1–23, 2008.

[NLL+15] Rocco De Nicola, Diego Latella, Alberto Lluch Lafuente, Michele Loreti, Andrea
Margheri, Mieke Massink, Andrea Morichetta, Rosario Pugliese, Francesco Tiezzi, and
Andrea Vandin. The SCEL Language: Design, Implementation, Verification. In Martin
Wirsing, Matthias Hölzl, Nora Koch, and Philip Mayer, editors, Software Engineering
for Collective Autonomic Systems: Results of the ASCENS Project, volume 8998 of Lec-
ture Notes in Computer Science. Springer Verlag, Heidelberg, 2015.

[NZ15] Victor Noël and Franco Zambonelli. Methodological Guidelines for Engineering Self-
Organization and Emergence. In Martin Wirsing, Matthias Hölzl, Nora Koch, and Philip
Mayer, editors, Software Engineering for Collective Autonomic Systems: Results of the

ASCENS 51

D7.4: Fourth Report on WP7 (Final) March 12, 2015

ASCENS Project, volume 8998 of Lecture Notes in Computer Science. Springer Verlag,
Heidelberg, 2015.

[PCZ13] Mariachiara Puviani, Giacomo Cabri, and Franco Zambonelli. A taxonomy of architec-
tural patterns for self-adaptive systems. In Proceedings of the International C* Confer-
ence on Computer Science and Software Engineering, C3S2E ’13, pages 77–85, New
York, NY, USA, 2013. ACM.

[Pet] Peter Mell and Timothy Grance. The NIST Definition of Cloud Computing. Special
Publication 800-145, NIST - National Institute of Standards and Technology, 2011.

[PF13] Mariachiara Puviani and Regina Frei. Self-management for cloud computing. In SAI
Conference, London, UK, 2013.

[PTO+12] Carlo Pinciroli, Vito Trianni, Rehan O’Grady, Giovanni Pini, Arne Brutschy, Manuele
Brambilla, Nithin Mathews, Eliseo Ferrante, Gianni Di Caro, Frederick Ducatelle,
Mauro Birattari, Luca Maria Gambardella, and Marco Dorigo. ARGoS: a modular,
parallel, multi-engine simulator for multi-robot systems. Swarm Intelligence, 6(4):271–
295, 2012.

[RD01a] Antony Rowstron and Peter Druschel. Storage management and caching in past, a large-
scale, persistent peer-to-peer storage utility. In ACM SIGOPS Operating Systems Re-
view, volume 35, pages 188–201. ACM, 2001.

[RD01b] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentralized object loca-
tion, and routing for large-scale peer-to-peer systems. In Proceedings of the IFIP/ACM
International Conference on Distributed Systems Platforms Heidelberg, Middleware
’01, pages 329–350, London, UK, UK, 2001. Springer-Verlag.

[RN02] Stuart Russell and Peter Norvig. Artificial Intelligence - a modern approach. Prentice
Hall, 2 edition, 2002.

[RRMP08] Andreas Rausch, Ralf Reussner, Raffaela Mirandola, and Frantisek Plasil, editors. The
Common Component Modeling Example: Comparing Software Component Models,
volume 5153 of LNCS. Springer, 2008.

[SMK13] Nikola Serbedzija, Philip Mayer, and Anabella Klarl. Engineering autonomous systems.
In PCI13 Proceedings of the 17th Panhellenic Conference on Informatics, Thesalloniki,
Greece, September 2013, pages 279 – 288, 2013.

[Szy02] Clemens Szyperski. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley, Boston, MA, USA, 2nd edition, 2002.

[VH13] E. Vassev and M. Hinchey. Implementing artificial awareness with knowlang. In Systems
Conference (SysCon), 2013 IEEE International, pages 580–586, April 2013.

[VH15] Emil Vassev and Mike Hinchey. Engineering Requirements for Autonomy Features.
In Martin Wirsing, Matthias Hölzl, Nora Koch, and Philip Mayer, editors, Software
Engineering for Collective Autonomic Systems: Results of the ASCENS Project, volume
8998 of Lecture Notes in Computer Science. Springer Verlag, Heidelberg, 2015.

[WJ95] M Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice. Knowledge
Engineering Review, 10(2):115 – 152, 1995.

ASCENS 52

D7.4: Fourth Report on WP7 (Final) March 12, 2015

[Woo09] M. Wooldridge. An Introduction to MultiAgent Systems. Wiley, 2 edition, 2009.

[Zim14] Zimory Software. Zimory Cloud Suite. http://www.zimory.com/, August 2014.

ASCENS 53

	Introduction
	Work Organization
	Structure of the Report

	Swarm Robotics
	Overview
	Major awareness/autonomic issues
	Implementation details
	Exploration
	Construction

	Evaluation and validation
	Requirement Engineering
	Modeling / Programming and Verificaton / Validation
	Awareness and Adaptation

	Summary

	The Autonomic Cloud
	Influencing Areas of Computing
	Cloud Computing
	Voluntary Computing
	Peer-to-Peer Computing
	Bringing it all together

	Handling awareness and adaptation
	Adaptation Patterns
	Modeling Ensemble Behavior
	System Specification in SCEL
	Supporting Mobile Nodes with jDEECo
	The EDLC and Other ASCENS methods

	Implementation
	Implementing an Autonomic Cloud
	Integrating Zimory IaaS

	Evaluation and Validation
	Summary

	E-mobility
	Overview
	e-Mobility Concept
	e-Mobility Development Life Cycle

	Major awareness/autonomic issues
	High-level Requirements Engineering with SOTA
	Low-level Requirements Engineering with the Invariant Refinement Method
	Combining SOTA and IRM

	Implementation details
	Evaluation and validation
	MATSim Transportation Modeling
	Integration of jDEECo and MATSim

	Summary

	Conclusions

