
www.ascens-ist.eu

ASCENS
Autonomic Service-Component Ensembles

D6.4: Fourth Report on WP6
The SCE Workbench and Integrated Tools, Final Release

Grant agreement number: 257414
Funding Scheme: FET Proactive
Project Type: Integrated Project
Latest version of Annex I: Version 3.0 (29.4.2014)

Lead contractor for deliverable: CUNI
Author(s): D. Abeywickrama (UNIMORE), V. Horký, J. Kofroň, M. Kit
(CUNI), A. Lluch Lafuente (IMT), M. Loreti, P. Mayer (LMU), P. Tůma
(CUNI), A. Vandin (IMT)

Reporting Period: 4
Period covered: October 1, 2013 to March 31, 2015
Submission date: March 12, 2015
Revision: Final
Classification: PU

Project coordinator: Martin Wirsing (LMU)
Tel: +49 89 2180 9154
Fax: +49 89 2180 9175
E-mail: wirsing@lmu.de

Partners: LMU, UNIPI, UDF, Fraunhofer, UJF-Verimag, UNIMORE,
ULB, EPFL, VW, Zimory, UL, IMT, Mobsya, CUNI

D6.4: Fourth Report on WP6 (Final) March 12, 2015

Executive Summary

The progress of ASCENS workpackage WP6, which deals with tool development and integration, has
been described annually in deliverables D6.1, D6.2 and D6.3. The deliverable D6.4 concludes this
sequence with the description of progress in the final project year.

As a major departure from the previous tool deliverables, this year we do not present the overall
tool landscape – instead, we focus on progress updates only. This is to avoid redundancy with the joint
deliverable JD4.2, which provides complete tool landscape overview together with detailed description
of each tool.

ASCENS 2

D6.4: Fourth Report on WP6 (Final) March 12, 2015

Contents

1 Introduction 5

2 Updates 6
2.1 AVis . 6

2.1.1 Tool Purpose . 6
2.1.2 Development Progress . 6

2.2 FACPL: Policy IDE and Evaluation Library . 7
2.2.1 Tool Purpose . 7
2.2.2 Development Progress . 7

2.3 Gimple Model Checker . 7
2.3.1 Tool Purpose . 7
2.3.2 Development Progress . 8

2.4 MAIA . 8
2.4.1 Tool Purpose . 8
2.4.2 Development Progress . 8

2.5 Iliad . 8
2.5.1 Tool Purpose . 8
2.5.2 Development Progress . 9

2.6 Science Cloud Platform . 9
2.6.1 Tool Purpose . 9
2.6.2 Development Progress . 9

2.7 SPL . 10
2.7.1 Tool Purpose . 10
2.7.2 Development Progress . 10

2.8 jDEECo: Java runtime environment for DEECo applications 10
2.8.1 Tool Purpose . 10
2.8.2 Development Progress . 11

2.9 jRESP: Runtime Environment for SCEL Programs 11
2.9.1 Tool Purpose . 11
2.9.2 Development Progress . 11

2.10 jSAM: Java Stochastic Model-Checker . 12
2.10.1 Tool Purpose . 12
2.10.2 Development Progress . 13

3 Conclusion 13

ASCENS 3

D6.4: Fourth Report on WP6 (Final) March 12, 2015

ASCENS 4

D6.4: Fourth Report on WP6 (Final) March 12, 2015

1 Introduction

The ASCENS project tackles the challenge of building systems that are open ended, highly parallel
and massively distributed. Towards that goal, the ASCENS project considers designing systems as
ensembles of adaptive components. Properly designed, such ensembles should operate reliably and
predictably in open and changing environments. Among the outputs of the ASCENS project are
methods and tools that address particular issues in designing the ensembles.

The structure of the ASCENS project reflects the multiplicity of issues in designing the ensem-
bles. Separate workpackages aim at topics such as formal modeling of ensembles or the knowledge
representation for awareness. The tool development activities of these individual workpackages are
coordinated through WP6, a workpackage dedicated to keeping track of tool development and direct-
ing tool integration.

The progress of workpackage WP6 is reported in annual deliverables. The deliverable D6.1 col-
lected the tool integration requirements. The deliverables D6.2 and D6.3 presented two preliminary
tool releases. This deliverable, deliverable D6.4, coincides with the final tool release. Additionally, the
joint deliverable JD4.2 provides a complete overview of the tools. To avoid duplicating information
between D6.4 and JD4.2, D6.4 focuses on recent progress only (this is different from the past annual
deliverables, which also provided a complete overview for reader context).

The goal of the tool release is to maximize the practical outreach beyond project scope – hence,
effort has been made to have all tools as much self describing as possible, with the accompanying
documentation in the usually preferable form of online help, examples and tutorials. The textual
deliverables reference the online releases and inform about project progress, however, they are not
meant to supplant the tool documentation.

As in the past project years, the workpackage collaboration relies especially on personal meetings
and distributed development support. The personal meetings include the regular project meetings,
where a dedicated slot is reserved for planning and coordinating the tool integration activities. In this
reporting period, these were specifically the March general meeting in Modena and the July general
meeting in Braunschweig. The regular meetings are complemented with bilateral partner meetings
where more detailed issues are discussed.

In the final project year, most tool updates focused on supporting the case studies. The develop-
ment activities also included the general bugfixing and documenting work, related to preparing the
tools for final release. We present a quick summary focusing on workpackage collaboration, followed
by a more detailed description for those tools where significant update activities took place.

• WP1 focuses on the languages for coordinating ensemble components, providing the foundation
for work on the runtime environment for ensembles, in particular the jDEECo and jRESP frame-
works. This past year, both frameworks were extended significantly – jDEECo with support for
realistic network and realistic traffic simulation, jRESP with support for high level software
development and integration with other project tools, jSAM and FACPL.

• WP2 focuses on the models for collaborative and competitive ensembles. Among the tool update
activities, we have released the MAIA tool, implementing the Adaptable Interface Automata
formalism in Maude.

• WP3 deals with knowledge modeling for ensembles. Here, the KnowLang tool updates in-
cluded evolving some parts of the grammar compiler, and especially working on the KnowLang
reasoner.

ASCENS 5

D6.4: Fourth Report on WP6 (Final) March 12, 2015

• WP4 activities concern the ensemble self expression, with modeling and simulation being
prominent. With the ARGoS and SimSOTA platforms being fairly stable, the tool updates here
include release of the AVis visualization tool.

• WP5 deals with the verification techniques for components and ensembles, among the tool
updates in the last year is the work on the GMC model checker.

Together with WP7 and WP8, the WP6 workpackage forms an integrated block of activities fo-
cused on applying the project results. Where WP6 provides tool integration, WP7 drives the case
studies that use the tools, and WP8 complements the tools with ensemble engineering practices.

2 Updates

The following sections describe major updates of each tool in the last reporting period, together with
a brief refresh of the tool purpose. A complete list of tools is available in the joint deliverable JD4.2.

2.1 AVis

2.1.1 Tool Purpose

Monitoring in the EDLC is an activity performed at runtime to observe and collect awareness data of
the system and environment to trace awareness and adaptation capabilities. The monitored awareness
data can be a component’s status (e.g. its current location) or information about the environment
in which the components are executing (e.g. monitored sensor data), and adaptation is the runtime
modification of the awareness data in a component’s knowledge repository.

In this context, the Awareness Visualizer (AVis) is an Eclipse plug-in we have developed for tracing
the awareness and adaptation capabilities of an application executing in the jRESP runtime environ-
ment. The AVis plug-in, which contains three main components (i.e. model, view and controller), has
been developed as a rich client application with Graphical Editing Framework (GEF) capabilities.

2.1.2 Development Progress

The AVis plug-in was developed during the fourth year of the ASCENS project.
The AVis plug-in has been integrated with the jRESP runtime environment to facilitate the moni-

toring of changes to awareness data. Here, the monitored application (see step 1 in Fig. 1) can be any
application scenario executing in jRESP. The model encompasses the data portion of the plug-in ar-
chitecture, containing POJOs (Plain Old Java Objects) created for the monitored awareness attributes.
These are created at runtime using the knowledge attributes in the interface of a node in jRESP. We
employ the Observer-observable pattern in Java for listening and notifying the state of the POJO
awareness objects in our visualizer plug-in when the corresponding state of the attributes in the node’s
interface are updated (see 3–4, Fig. 1).

The AVis plug-in has been assessed using two scenarios of the Swarm robotics case study. They
are the use of different robot types for different roles (disaster scenario with landmark and worker
robots), and the use of one robot type for several different roles (e.g. explorer, rescuer, help rescuer,
low battery).

ASCENS 6

D6.4: Fourth Report on WP6 (Final) March 12, 2015

1

2

3 4

5

6

Figure 1: AVis plug-in system architecture and jRESP.

2.2 FACPL: Policy IDE and Evaluation Library

2.2.1 Tool Purpose

FACPL [MMPT13] is a tiny policy language for writing policies and requests. It has a mathematically
defined semantics and can be used to regulate interaction and adaptation of SCEL components. FACPL
provides user-friendly, uniform, and comprehensive linguistic abstractions for policing various aspects
of system behaviour, as e.g. access control, resource usage, and adaptation. The result of a request
evaluation is an authorisation decision (e.g. permit or deny), which may also include some obligations,
i.e. additional actions to be executed for enforcing the decision.

FACPL is supported by an IDE and a Java implementation library. The IDE facilitates writing the
desired policies in FACPL syntax, with features such as code completion and syntax checks. The IDE
automatically produces a set of Java classes implementing the FACPL code, using the specification
classes defined in the FACPL library. The library, according to the rules defining the language seman-
tics, implements the request evaluation process, given as input a set of Java-translated policies and the
request to evaluate.

2.2.2 Development Progress

The FACPL library and IDE have been developed during the third year of the project. In the fourth
year of the project, the Java evaluation environment has been integrated within the jRESP runtime
environment, thus enabling a full evaluation of the policy layer when programming ensembles using
SCEL. Furthermore, the FACPL policy syntax has been added to the HL-SCEL tool, which supports
the development of SCEL applications using standard programming constructs, such as conditional
branches and loops, and an automatic generation of jRESP code.

2.3 Gimple Model Checker

2.3.1 Tool Purpose

Gimple Model Checker (GMC) is an explicit-state code model checker for C and C++ programs. It
can reveal errors manifesting themselves in particular (usually rare) interleavings which are hard to
find via testing. GMC supports multi-threaded programs and executes all possible interleavings to
discover errors manifested only in certain thread schedules. From the ASCENS project perspective,

ASCENS 7

D6.4: Fourth Report on WP6 (Final) March 12, 2015

GMC is unique in that it can check some ensemble related properties, such as particular sequences of
accesses to the ensemble knowledge (using custom assertion statements in the code).

On the technical side, GMC detects low-level programming errors such as invalid memory us-
age (buffer overflows, memory leaks, use-after-free defects, uninitialized memory reads), null-pointer
dereferences, and assertion violations. GMC understands not only the pthread library [pth], but also
offers means to add support for other thread libraries based on the same principles.

2.3.2 Development Progress

During the last project period, the work on GMC especially focused on implementing missing parts
of the C++ runtime as provided by the GCC tool chain. Specifically, this included support for built-
in synchronization as well as initialization routines, which were crucial for running (and verifying)
multi-threaded programs. We also discovered several issues arising when using the standard template
library (STL) in verified programs, caused by very frequent use of template nesting.

We also finished the integration of GMC into SDE, which is now available in the form of an
Eclipse update site and enables the GMC to be used during everyday C/C++ development directly
from SDE (and generally any Eclipse installation containing the C/C++ development support).

2.4 MAIA

2.4.1 Tool Purpose

As part of a research line pursued in collaboration between project partners, we have presented an es-
sential model of adaptable transition systems [BCG+12a] inspired by white-box approaches to adap-
tation [BCG+12b] and based on foundational models of component based systems [dAH01, dA03].
The key feature of adaptable transition systems are control propositions, a subset of the atomic propo-
sitions labelling the states of our transition systems, imposing a clear separation between ordinary,
functional behaviours and adaptive ones. Interestingly, control propositions can be exploited in the
specification and analysis of adaptive systems, focusing on various notions proposed in the litera-
ture, like adaptability, control loops, and control synthesis. We instantiated our approach on Interface
Automata (IA) [dAH01, dA03], yielding Adaptable Interface Automata (AIA) [BCG+12a].

MAIA is an implementation of AIAs in Maude, allowing one to specify AIAs, to draw them, and
to perform operations on them such as product, composition, decomposition and control synthesis.

2.4.2 Development Progress

MAIA has been developed during the third year of the project and released in the fourth year. It
currently comes as a set of Maude files to be imported by the specifications of adaptable interface
automata modelling adaptive systems.

2.5 Iliad

2.5.1 Tool Purpose

Iliad is a framework for building awareness mechanisms [HG15] for open-ended, distributed sys-
tems based on machine learning and reasoning techniques. It supports deep learning and hierarchical
reinforcement learning, predicate-logic reasoning with integrated support for constraint processing,
inference in Bayesian networks, and heuristic planning.

Iliad’s input language is called POEM. In POEM, programmers can leave choices of actions or
values partially unspecified and indicate which learning or reasoning mechanisms should resolve the

ASCENS 8

D6.4: Fourth Report on WP6 (Final) March 12, 2015

non-determinism of each choice. Therefore developers can either establish fixed behaviors, indicate
design-time preferences or simply state the possible actions. Iliad will optimize these choices either
by reasoning or by learning from feedback provided by the environment. Given sufficient knowledge
or training, the actions determined by Iliad will converge to those with the highest expected value for
the environment in which the ensemble is operating.

Iliad is based on a flexible communication protocol called Hexameter. Hexameter implements the
SCEL get, qry and put operators on top of the cross-platform, open source networking library ØMQ
(zeromq.org). At the moment of writing Hexameter front-ends for Lua, Common Lisp, Java and
JavaScript are available and can seamlessly interoperate. Therefore, Iliad can not only be used as a
stand-alone reasoner but also as a knowledge repository for SCEL or as learning component for other
reasoning systems such as the KnowLang reasoner.

2.5.2 Development Progress

During the last reporting period our focus was on simplifying the input language for Iliad, supporting
learning for service components that do not synchronize their activities, and improving the scalability
of the reinforcement learning system. These goals were achieved by implementing a new frontend
for Iliad that is based on extended behavior trees (XBTs). This front-end allowed us to integrate
hierarchical variants of lenient Q-learning [HG15] which are particularly well suited to uncoordinated
learning in distributed settings, and the simple structure of XBTs improves scalability by allowing the
integration of special-purpose planners and reasoners into a hierarchical learning framework.

2.6 Science Cloud Platform

2.6.1 Tool Purpose

The Science Cloud Platform (SCP) is the software system developed as part of the science cloud case
study of ASCENS. The SCP is a platform-as-a-service cloud computing infrastructure which enables
users to run applications while each individual node of the cloud is voluntarily provided (i.e., may
come and go), data is stored redundantly, and applications are moved according to current load and
availability of server resources.

The SCP can also take advantage of IaaS (Infrastructure-as-a-Service) platform such as the Zimory
Cloud [Zim14], when available. In this case, new virtual machines running the SCP can be started on
demand, and shut down to conserve energy when no longer needed.

The Science Cloud Platform serves as the main technical demonstrator for the cloud case study
of ASCENS, integrating many of the newly researched methods and techniques into one software
system.

2.6.2 Development Progress

This year, the work on SCP has focused on two areas, an overhaul of the communication strategy and
the integration of support for an IaaS (Infrastructure-as-a-Service) platform.

Firstly, we have created an alternative implementation for communication on the application level
with the integration of a gossip (endemic) strategy which uses dedicated roles at each node as speci-
fied in the Helena approach [KMH14]. This increases scalability since it does not depend on global
broadcasts as in the ContractNET implementation, and serves to structure the implementation along
role-based lines.

The second area concerns the integration of the Zimory Cloud [Zim14], an industry-strength IaaS
solution. Each node in the system has been extended with the ability to interact with an IaaS solution

ASCENS 9

zeromq.org

D6.4: Fourth Report on WP6 (Final) March 12, 2015

(when available). Thus, if no node is available for executing a certain application, a new virtual
machine with the required capabilities is started on demand. Once online, the application is moved to
this machine. If the application is later shut down or a non-virtualized machine becomes available, the
virtual machine is shut down again, thus conserving energy.

The final SCP version thus contains all of the functionality envisioned in the requirements listed in
the results of the first year of ASCENS while taking advantage of many of the research results which
became available in subsequent years of the project.

2.7 SPL

2.7.1 Tool Purpose

SPL is a Java framework for implementing application adaptation based on observed or predicted
application performance [BBH+12]. The framework is based on the Stochastic Performance Logic,
a many-sorted first-order logic with inequality relations among performance observations. The logic
allows to express assumptions about program performance and the purpose of the SPL framework is
to give software developers an elegant way to use it to express rules controlling program adaptation.

The SPL framework internally consists of three parts that work together but can be (partially) used
independently. The first part is a Java agent that instruments the application and collects performance
data. The agent uses the Java instrumentation API [Ora12]; the actual byte code transformation is done
using the DiSL framework [MZA+12]. The second part of the framework offers an API to access the
collected data and evaluate SPL formulas. The third part of the framework implements the interface
between the application and the SPL framework. This API is used for the actual adaptation.

2.7.2 Development Progress

The work in the fourth year of the project has focused on integrating SPL-based feedback into the
development process. A prototype SPL tool version can now take the performance annotations and
the workload implementation from performance tests, perform the required measurements and inject
the results into standard software documentation as generated using Javadoc. The same mechanism
can be used to display feedback from the ASCENS ensemble development lifecycle runtime in relevant
code locations during development.

2.8 jDEECo: Java runtime environment for DEECo applications

2.8.1 Tool Purpose

jDEECo is a Java-based implementation of the DEECo component model [BGH+12] runtime frame-
work. It allows for convenient management and execution of jDEECo components and ensemble
knowledge exchange.

The main tasks of the jDEECo runtime framework are providing access to the knowledge repos-
itory, storing the knowledge of all the running components, scheduling execution of component pro-
cesses (either periodically or when a triggering condition is met), and evaluating membership of the
running ensembles and, in the positive case, carrying out the associated knowledge exchange (also ei-
ther periodically or when triggered). In general, the jDEECo runtime framework allows both local and
distributed execution; currently, the distribution is achieved on the level of the knowledge repository.

ASCENS 10

D6.4: Fourth Report on WP6 (Final) March 12, 2015

2.8.2 Development Progress

In the last project year, we have been working primarly on adding support for simulation to jDEECo.
We have managed to integrate jDEECo runtime with (i) the OMNeT++1 network simulator and (ii)
with the MATSim2 traffic simulator. Whereas integration with (i) allows to realistically simulate
jDEECo applications with respect to network infrastructure behavior, integration with (ii) makes it
possible to simulate the mobility of jDEECo deployment nodes.

In particular, OMNeT++ provides detailed models of hardware used in contemporary wired and
wireless networks together with implementations of different communication protocols recognized
so far as standards. MATSim, on the other hand, comes with an extensive agent-based framework.
We leveraged its transport simulation functionality by adding the concept of sensors and actuators in
jDEECo. By that, each component is capable of retrieving the current geographical location of the
node it is deployed on as well as set its position to the desired one.

The integration of these two tools resulted in the jDEECoSim platform. We plan to further extend
jDEECoSim by other tools such as SUMO (Simulation of Urban Mobility). Until now, we have
validated the platform on a few examples, stemming mainly from the e-Mobility case study.

2.9 jRESP: Runtime Environment for SCEL Programs

2.9.1 Tool Purpose

jRESP is a runtime environment that provides Java programmers with a framework for developing
autonomic and adaptive systems based on the SCEL concepts. SCEL [DFLP11, NFLP13] identifies
the linguistic constructs for modelling the control of computation, the interaction among possibly
heterogeneous components, and the architecture of systems and ensembles. jRESP provides an API
that permits using the SCEL paradigm in Java programs.

In SCEL, some specification aspects, such as the knowledge representation, are not fixed but
can be customized depending on the application domain or the taste of the language user. Other
mechanisms, for instance the underlying communication infrastructure, are not considered at all and
remain abstracted in the operational semantics. For this reason, the entire framework is parametrised
with respect to specific implementations of these particular features. To simplify the integration of
new features, recurrent patterns are largely used in jRESP.

2.9.2 Development Progress

In the forth year of the project, development of jRESP continued in three directions: integration of
FACPL in jRESP; development of a high level programming language based on SCEL; integration
with jSAM.

Integration with FACPL In jRESP, like in SCEL, policies can be used to authorise local actions
and to regulate the interactions among components. Policies can authorise or not the execution of the
action (e.g., according to some contextual information) and, possibly, adapt the agent behaviour by
returning additional actions to be executed. jRESP provides a common policy interface that can be
implemented to integrate different kinds of policies.

The policy interface is currently implemented by two different classes: the permissive policy
class and the policy automaton class. The former is the default policy of each node; it allows any
action by directly delegating its execution to the corresponding node. The latter policy implements a

1http://www.omnetpp.org
2http://www.matsim.org

ASCENS 11

D6.4: Fourth Report on WP6 (Final) March 12, 2015

generic policy automaton Π which triggers policy changes according to the execution of agent actions.
In particular, a policy automaton consists of a set of automaton states, each of which identifies the
possible policies enforced in the node, and of a reference to the current state, which is used to authorise
agent actions with respect to the current policies.

When the policy automaton receives a request for the execution of a given action, first of all
an authorisation request representing the action is created. This request identifies the action an agent
wants to perform (it provides the action name, its argument, its target and the list of attributes currently
published in the node interface). The created authorization request is then evaluated with respect to
the current policy state. Request evaluation can trigger an update of the current state of the policy
automaton. Indeed, for each state, a sequence of transitions is stored in the automaton. Each transition
can declare itself enabled or disabled, enabled transitions further provide the new automaton state.

The integration of FACPL in jRESP relies on a specialization of the policy automaton state which
wraps the Java-translated FACPL policies, obtained automatically from the FACPL IDE. The special-
ized class delegates the authorisation decisions to the appropriate FACPL policies. An authorization
response consists of the decision itself – permit or deny – and a set of obligations. These are rendered
as a sequence of actions that must be performed just after the completion of the currently requested
action. If the decision is to permit an action, the corresponding agent can continue as soon as all the
obligations are executed. Instead, if the decision is to deny an action, the requested action cannot be
performed and the obligations possibly returned must be executed. After their completion, the action
previously forbidden can be requested again.

HL-SCEL and integration with jSAM jRESP permits integrating SCEL programming constructs
within Java programs. However, to simplify the development process and to simplify the use of formal
tools, it could be useful to have an high level programming language that, by enriching SCEL with
standard programming constructs (e.g. control flow constructs, such as while or if-then-else,
structured data types,. . .), simplifies the programming task. For this reason we have defined HL-
SCEL, a SCEL inspired high level programming language thought for simplifying design, develop-
ment and deployment of autonomous and adaptive system. We have also developed an Eclipse plug-in
named SCEL SDK that, by relying on XText3, automatically generates jRESP code that can be used
to simulate and execute the programmed system. SCEL SDK has been also integrated with jSAM
(see Section 2.10) to provide a simplified interface for supporting quantitative analysis of HL-SCEL
programs based on simulations and statistical model checking.

2.10 jSAM: Java Stochastic Model-Checker

2.10.1 Tool Purpose

jSAM is an Eclipse plugin integrating a set of tools for stochastic analysis of concurrent and distributed
systems specified using process algebras. More specifically, jSAM provides tools that can be used for
interactively executing specifications and for simulating their stochastic behaviors. Moreover, jSAM
integrates a statistical model-checking algorithm [CL10, HYP06, QS10] that permits verifying if a
given system satisfies a CSL-like [ASSB00, BKH] formula.

jSAM does not rely on a single specification language, but provides a set of basic classes that can
be extended in order to integrate any process algebra.

3http://www.eclipse.org/Xtext/

ASCENS 12

http://www.eclipse.org/Xtext/

D6.4: Fourth Report on WP6 (Final) March 12, 2015

2.10.2 Development Progress

In the last year of the project, the work around jSAM proceeded towards two directions. On one hand
we have integrated new model checking techniques, specifically designed for supporting analysis of
large scale systems. On the other hand we have integrated the jRESP simulation environment in order
to enable the analysis of SCEL programs via jSAM.

On-the-fly model checking. Model checking approaches can be divided into two broad categories:
global approaches that determine the set of all states in a modelM that satisfy a temporal logic formula
Φ, and local approaches in which, given a state s inM, the procedure determines whether s satisfies Φ.
When s is a term of a process language, the model-checking procedure can be executed “on-the-fly”,
driven by the syntactical structure of s. For certain classes of systems, e.g. those composed of many
parallel components, the local approach is preferable because, depending on the specific property, it
may be sufficient to generate and inspect only a relatively small part of the state space. In [LLM14] an
efficient, on-the-fly, PCTL model checking procedure that is parametric with respect to the semantic
interpretation of the language has been proposed. The proposed model checking algorithm has been
integrated in jSAM together with a new module for supporting specification and analysis of systems
via the PRISM language.

FlyFast model checker. Typical self-organising collective systems consist of a large number of in-
teracting objects that coordinate their activities in a decentralised and often implicit way. Design of
such systems is challenging and requires suitable, scalable analysis tools to check properties of pro-
posed system designs before they are put into operation. The exploitation of mean field approximation
in model-checking techniques seems a promising approach to overcome scalability issues raised by
the size of such collective systems. In [LLM13a, LLM13b] we have presented a novel scalable, on-
the-fly model-checking procedure to verify bounded PCTL properties of selected individuals in the
context of very large systems of independent interacting objects. The proposed procedure combines
on-the-fly model checking techniques with deterministic mean-field approximation in discrete time.
A prototype implementation of the model-checker, named FlyFast, has been integrated into jSAM and
used to verify properties of a selection of simple and more elaborate case studies.

SCEL SDK and HL-SCEL. To support design, analysis and deployment of autonomous and adap-
tive systems developed in SCEL, we have integrated in jSAM a plug-in that, by relying on jRESP
simulation environment, enables the use of (some of) the formal tools available in our framework.
The proposed plug-in, named SCEL SDK, takes as input HL-SCEL specifications and automatically
generates the Java classes used to simulate and execute the considered system.

3 Conclusion

The concluding tool development and integration activities of the ASCENS project have naturally
centered around the runtime execution platforms used in the case studies, especially the jDEECo and
jRESP frameworks. The updates to these platforms are described in Sections 2.8 and 2.9, respectively.
More information about the case studies themselves can be found in the deliverable D7.4.

In general terms, the tool development effort in the fourth year followed the established procedures
to assist partner cooperation – in particular, having public tool source repositories where possible, pro-
viding tool usage examples, and organizing meetings between tool authors and tool users as necessary.

The same approach – that is, using standard open source development and dissemination practices
(source repositories, build tools, update sites) – is part of the effort to enable continuous exploitation

ASCENS 13

D6.4: Fourth Report on WP6 (Final) March 12, 2015

(and possibly further development) of the tools beyond the conclusion of the project. More information
on the overall tool landscape is provided in the joint deliverable JD4.2.

ASCENS 14

D6.4: Fourth Report on WP6 (Final) March 12, 2015

References

[ASSB00] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Model checking continuous time
Markov chains. Transations on Computational Logic, 1(1):162–170, 2000.

[BBH+12] Lubomir Bulej, Tomas Bures, Vojtech Horky, Jaroslav Keznikl, and Petr Tuma. Perfor-
mance Awareness in Component Systems: Vision Paper. COMPSAC ’12, 2012.

[BCG+12a] Roberto Bruni, Andrea Corradini, Fabio Gadducci, Alberto Lluch-Lafuente, and Andrea
Vandin. Adaptable transition systems. In Narciso Martı́-Oliet and Miguel Palomino,
editors, WADT, volume 7841 of Lecture Notes in Computer Science, pages 95–110.
Springer, 2012.

[BCG+12b] Roberto Bruni, Andrea Corradini, Fabio Gadducci, Alberto Lluch-Lafuente, and An-
drea Vandin. A conceptual framework for adaptation. In Juan de Lara and Andrea Zis-
man, editors, FASE, volume 7212 of Lecture Notes in Computer Science, pages 240–254.
Springer, 2012.

[BGH+12] Tomas Bures, Ilias Gerostathopoulos, Vojtech Horky, Jaroslav Keznikl, Jan Kofron,
Michele Loreti, and Frantisek Plasil. Language Extensions for Implementation-Level
Conformance Checking. ASCENS Deliverable D1.5, 2012.

[BKH] C. Baier, J.-P. Katoen, and H. Hermanns. Approximate symbolic model checking of
continuous-time Markov chains. pages 146–162.

[CL10] Francesco Calzolai and Michele Loreti. Simulation and analysis of distributed systems in
klaim. In Dave Clarke and Gul A. Agha, editors, Coordination Models and Languages,
12th International Conference, COORDINATION 2010, Amsterdam, The Netherlands,
June 7-9, 2010. Proceedings, volume 6116 of Lecture Notes in Computer Science, pages
122–136. Springer, 2010.

[dA03] Luca de Alfaro. Game models for open systems. In Nachum Dershowitz, editor, Verifi-
cation: Theory and Practice, volume 2772 of LNCS, pages 269–289. Springer, 2003.

[dAH01] Luca de Alfaro and Thomas A. Henzinger. Interface automata. In ESEC/SIGSOFT FSE
2001, volume 26(5) of ACM SIGSOFT Software Engineering Notes, pages 109–120.
ACM, 2001.

[DFLP11] R. De Nicola, G. Ferrari, M. Loreti, and R. Pugliese. Languages primitives for coordina-
tion, resource negotiation, and task description. ASCENS Deliverable D1.1, September
2011. http://rap.dsi.unifi.it/scel/.

[HG15] Matthias Hölzl and Thomas Gabor. Continuous Collaboration: A Case Study on the De-
velopment of an Adaptive Cyber-Physical System. In Proc. of the International Work-
shop on Software Engineering for Smart Cyber-Physical Systems (SEsCPS), Firenze,
Italy, 2015. to appear.

[HYP06] G. Norman H. Younes, M. Kwiatkowska and D. Parker. Numerical vs. statistical proba-
bilistic model checking. International Journal on Software Tools for Technology Trans-
fer, 8(3):216–228, June 2006.

ASCENS 15

http://rap.dsi.unifi.it/scel/

D6.4: Fourth Report on WP6 (Final) March 12, 2015

[KMH14] Annabelle Klarl, Philip Mayer, and Rolf Hennicker. Helena@work: Modeling the sci-
ence cloud platform. In Tiziana Margaria and Bernhard Steffen, editors, Leveraging Ap-
plications of Formal Methods, Verification and Validation. Technologies for Mastering
Change, volume 8802 of Lecture Notes in Computer Science, pages 99–116. Springer
Berlin Heidelberg, 2014.

[LLM13a] Diego Latella, Michele Loreti, and Mieke Massink. On-the-fly fast mean-field model-
checking. In Martı́n Abadi and Alberto Lluch-Lafuente, editors, Trustworthy Global
Computing - 8th International Symposium, TGC 2013, Buenos Aires, Argentina, August
30-31, 2013, Revised Selected Papers, volume 8358 of Lecture Notes in Computer Sci-
ence, pages 297–314. Springer, 2013.

[LLM13b] Diego Latella, Michele Loreti, and Mieke Massink. On-the-fly fast mean-field model-
checking: Extended version. CoRR, abs/1312.3416, 2013.

[LLM14] Diego Latella, Michele Loreti, and Mieke Massink. On-the-fly probabilistic model
checking. In Ivan Lanese, Alberto Lluch-Lafuente, Ana Sokolova, and Hugo Torres
Vieira, editors, Proceedings 7th Interaction and Concurrency Experience, ICE 2014,
Berlin, Germany, 6th June 2014., volume 166 of EPTCS, pages 45–59, 2014.

[MMPT13] Andrea Margheri, Massimiliano Masi, Rosario Pugliese, and Francesco Tiezzi. A For-
mal Software Engineering Approach to Policy-based Access Control. Technical report,
DiSIA, Univ. Firenze, 2013. http://rap.dsi.unifi.it/facpl/research/
Facpl-TR.pdf.

[MZA+12] Lukáš Marek, Yudi Zheng, Danilo Ansaloni, Walter Binder, Zhengwei Qi, and Petr
Tuma. DiSL: An extensible language for efficient and comprehensive dynamic pro-
gram analysis. In Proc. 7th Workshop on Domain-Specific Aspect Languages, DSAL
’12, pages 27–28, New York, NY, USA, 2012. ACM.

[NFLP13] Rocco Nicola, Gianluigi Ferrari, Michele Loreti, and Rosario Pugliese. A language-
based approach to autonomic computing. In Bernhard Beckert, Ferruccio Damiani,
FrankS. Boer, and MarcelloM. Bonsangue, editors, Formal Methods for Components
and Objects, volume 7542 of Lecture Notes in Computer Science, pages 25–48. Springer
Berlin Heidelberg, 2013.

[Ora12] Oracle. java.lang.instrument (Java Platform, Standard Edition 6, API Spec-
ification), 2012. http://docs.oracle.com/javase/6/docs/api/java/
lang/instrument/package-summary.html.

[pth] POSIX Threads.
http://en.wikipedia.org/wiki/POSIX_Threads.

[QS10] Paola Quaglia and Stefano Schivo. Approximate model checking of stochastic cows.
In Proceedings of the 5th international conference on Trustworthly global computing,
TGC’10, pages 335–347, Berlin, Heidelberg, 2010. Springer-Verlag.

[Zim14] Zimory Software. Zimory Cloud Suite. http://www.zimory.com/, August 2014.

ASCENS 16

http://rap.dsi.unifi.it/facpl/research/Facpl-TR.pdf
http://rap.dsi.unifi.it/facpl/research/Facpl-TR.pdf
http://docs.oracle.com/javase/6/docs/api/java/lang/instrument/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/lang/instrument/package-summary.html
http://en.wikipedia.org/wiki/POSIX_Threads

	Introduction
	Updates
	AVis
	Tool Purpose
	Development Progress

	FACPL: Policy IDE and Evaluation Library
	Tool Purpose
	Development Progress

	Gimple Model Checker
	Tool Purpose
	Development Progress

	MAIA
	Tool Purpose
	Development Progress

	Iliad
	Tool Purpose
	Development Progress

	Science Cloud Platform
	Tool Purpose
	Development Progress

	SPL
	Tool Purpose
	Development Progress

	jDEECo: Java runtime environment for DEECo applications
	Tool Purpose
	Development Progress

	jRESP: Runtime Environment for SCEL Programs
	Tool Purpose
	Development Progress

	jSAM: Java Stochastic Model-Checker
	Tool Purpose
	Development Progress

	Conclusion

