
www.ascens-ist.eu

ASCENS
Autonomic Service-Component Ensembles

D6.2: Second Report on WP6
The SCE Workbench and Integrated Tools, Pre-Release 1

Grant agreement number: 257414
Funding Scheme: FET Proactive
Project Type: Integrated Project
Latest version of Annex I: Version 2.2 (30.7.2011)

Lead contractor for deliverable: CUNI
Author(s): Jacques Combaz (UJF-VERIMAG), Vojtěch Horký (CUNI),
Jan Kofroň (CUNI), Jaroslav Keznikl (CUNI), Alberto Lluch Lafuente
(IMT), Michele Loreti (UDF), Philip Mayer (LMU), Carlo Pinciroli
(ULB), Petr Tůma (CUNI), Andrea Vandin (IMT)

Reporting Period: 2
Period covered: October 1, 2011 to September 30, 2012
Submission date: November 12, 2012
Revision: Final
Classification: PU

Project coordinator: Martin Wirsing (LMU)
Tel: +49 89 2180 9154
Fax: +49 89 2180 9175
E-mail: wirsing@lmu.de

Partners: LMU, UNIPI, UDF, Fraunhofer, UJF-Verimag, UNIMORE,
ULB, EPFL, VW, Zimory, UL, IMT, Mobsya, CUNI



D6.2: Second Report on WP6 (Final) November 12, 2012

Executive Summary

This text and the tools listed within constitute the ASCENS project deliverable D6.2, the first pre-
liminary release of the tools developed and integrated with the ASCENS project. At this stage of the
ASCENS project, the tools are still under development – the text presents the emerging tool land-
scape, explains how the individual tools contribute to the ASCENS project vision, and provides status
information on the tools themselves.

ASCENS 2



D6.2: Second Report on WP6 (Final) November 12, 2012

Contents

1 Introduction 5
1.1 Integration Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Current Tool Landscape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Collaboration With Other Workpackages . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Tool Presentation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Modeling Tools 9
2.1 jSAM: Java Stochastic Model-Checker . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Progress and Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Installation and Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Maude Daemon Wrapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Progress and Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Installation and Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Implementation Tools 12
3.1 BIP Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 Progress and Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.2 Installation and Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Gimple Model Checker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.1 Progress and Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Installation and Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Runtime Tools 17
4.1 ARGoS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.1 Progress and Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.2 Installation and Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 jDEECo: Java runtime environment for DEECo applications . . . . . . . . . . . . . 18
4.2.1 Progress and Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.2 Installation and Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3 jRESP: Runtime Environment for SCEL Programs . . . . . . . . . . . . . . . . . . 20
4.3.1 Progress and Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.2 Installation and Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.4 Science Cloud Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4.1 Progress and Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4.2 Installation and Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Introspection Tools 22
5.1 SPL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.1.1 Progress and Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1.2 Installation and Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6 Conclusion 24

ASCENS 3



D6.2: Second Report on WP6 (Final) November 12, 2012

ASCENS 4



D6.2: Second Report on WP6 (Final) November 12, 2012

1 Introduction

The ASCENS project tackles the challenge of building systems that are open ended, highly parallel
and massively distributed. Towards that goal, the ASCENS project considers designing systems as
ensembles of adaptive components. Properly designed, such ensembles should operate reliably and
predictably in open and changing environments. Among the outputs of the ASCENS project are
methods and tools that address particular issues in designing the ensembles.

The structure of the ASCENS project reflects the multiplicity of issues in designing the ensem-
bles. Separate workpackages aim at topics such as formal modeling of ensembles or the knowledge
representation for awareness. It is, however, important that the tools developed by the individual
workpackages permit integration into a comprehensive development process. Keeping track of the
tool development and directing the integration is the goal of workpackage WP6.

Following the deliverable D6.1, which collected the tool integration requirements, workpackage
WP6 plans three deliverables that take the form of tool releases. These are the preliminary tool releases
D6.2 and D6.3 and the final tool release D6.4. Although the eventual goal is to have the tools as
much self describing as possible, with the accompanying documentation in the usually preferable
form of online help, examples or tutorials, we also provide a textual deliverable that outlines the
tool development and integration progress (this is important especially for tools that are still under
development). Thus, the purpose of this text is to inform about progress, not to supplant the tool
documentation.

This text concerns the very first release within the ASCENS project, when the tools are planned
to be in an alpha stage. Both the user experience and the integration directions are just emerging and
the tools are still undergoing possibly major changes. Unfortunately but unavoidably, this impacts the
user experience. Most of the tools are only available from source code repositories and have to be built
before being used. The usual packaging and distribution support is not yet in place (the heterogeneous
character of the tools prevents straightforward use of the update sites – even if parts of the tool mod-
ules can be installed automatically, other parts are platform specific and require manual installation).
Overall, we have still decided to provide detailed information on where the tool development and in-
tegration process is heading, even if that implies providing early access to many of the tools with the
user experience not yet up to standards.

1.1 Integration Environment

In the last reporting period, the requirements on tool integration have been collected in the deliverable
D6.1, which has also justified the choice of the Service Development Environment (SDE) as the tool
integration platform. SDE has originated in the FP6 SENSORIA project and is currently used and
developed in the FP7 ASCENS and FP7 NESSOS projects.

SDE runs on the Eclipse platform, where it facilitates orchestration of the individual tools – a
particular orchestration configuration connects the inputs and outputs of the individual tools as directed
to achieve the desired integration. The choice of the Eclipse platform makes the integration particularly
efficient for tools compatible with OSGi. As much as it is practical, we therefore develop tools that
can be packed as OSGi bundles. For tools that do not fit the OSGi bundle format, we develop wrappers
as appropriate.

With the project activities focused on the individual tools, the recent SDE development has been
limited to fixing minor issues and tracking the development of the Eclipse platform, which has moved
from the 3.7 Indigo to the 4.2 Juno version and prompted some SDE changes.

ASCENS 5



D6.2: Second Report on WP6 (Final) November 12, 2012

1.2 Current Tool Landscape

The ASCENS project plan calls for the integration of both the development tools and the runtime
tools within the SDE umbrella. This practice follows the general trend of tool integration apparent
in standard integrated development environments – there, the modeling and editing tools are inte-
grated with profiles and debuggers, making it possible to reflect the runtime observations back into the
development.

On the development side, our tool support starts with the early stage formal modeling tools. At
the current project stage, these tools include the jSAM stochastic model checker (Section 2.1) for the
modeling approaches that rely on process algebras and the Maude Daemon Wrapper (Section 2.2) for
the modeling approaches that rely on rewriting logic.

Where applicable, we continue with tools for transition from models to implementations. At the
current project stage, these tools include the BIP compiler (Section 3.1) for the approaches that rely
on correctness by construction. For manual implementation, we provide frameworks that reify the
formal modeling concepts, at the current project stage these are jRESP (Section 4.3) and jDEECo
(Section 4.2) – as explained in other deliverables, the two frameworks follow different strategies in
mapping the SCEL language entities into implementation constructs.

Because the manual implementation approaches do not guarantee preserving the correspondence
between the model and the code, we also develop methods and tools to verify whether code com-
plies to models. At the current project stage, these tools are represented by the GMC model checker
(Section 3.2).

On the runtime side, our tool support has to consider the differences between ensembles and
more ordinary applications. The fact that ordinary applications can be launched as child processes of
the integrated development environments greatly simplifies the runtime support implementation. In
contrast, ensembles are not easily executed on demand – they may just be too large, or they may even
consist of components that are not purely software. To cope with this particular issue, we are working
on two complementary alternatives for runtime support. Where possible, such as in the scientific
cloud, we plan to use live ensemble introspection. Where not possible, such as in the robotic swarms,
we plan to introspect ensemble simulations.

At the current project stage, the simulation environment for the robotic swarms is ARGoS (Sec-
tion 4.1). This simulation environment provides built in observation and introspection capabili-
ties. Prototypes that act as ensemble simulators are also being built in jRESP and jDEECo. The
current tool for introspection in these environments is based on the DiSL instrumentation frame-
work [MVZ+12]. On top of DiSL, the SPL evaluation tool (Section 5.1) is used to reason about
performance. Additionally, our work on these introspection tools is aligned with the development of
the Science Cloud Platform (Section 4.4) to eventually allow live ensemble introspection.

1.3 Collaboration With Other Workpackages

Positioned as a tool integration workpackage, WP6 not only requires, but encourages and coordinates
collaboration with other workpackages of the ASCENS project where tool development is concerned.
Organizationally, this collaboration uses multiple venues available to the ASCENS project partici-
pants, especially personal meetings and distributed development support.

The personal meetings include the regular project meetings, where a dedicated slot is reserved for
planning and coordinating the tool integration activities. In this reporting period, these were specifi-
cally the March 2012 meeting in Firenze, the May 2012 meeting in Berlin, and the July 2012 meeting
in Limerick. At each of the meetings, a summary of current issues and future directions was created

ASCENS 6



D6.2: Second Report on WP6 (Final) November 12, 2012

and distributed among the project partners. The regular meetings are complemented with bilateral
partner meetings where more detailed issues are discussed.

The distributed development support relies on tools such as source control repositories, issue track-
ers, blogs and wikis to maintain connection between the software development activities of the indi-
vidual partners. Most tools have one partner as the primary developer, and the workpackage activities
include making the development activities of this partner available to the other partners as soon as the
development reaches an appropriate stage. Specific technical details on access to the individual tools
are distributed through the project wiki and are also available in this deliverable.

On the thematic side, we list the collaboration areas per workpackage. Given the focus of WP6
on tool integration, the collaboration naturally revolves around the tool development activities and the
tool use feedback:

• WP1 focuses on the languages for coordinating ensemble components. The collaboration be-
tween WP1 and WP6 includes providing feedback from the implementation activities into the
language design effort, reflected in the SCEL language refinements. The runtime environments
for ensembles based on SCEL models also originate in WP1. This includes the jDEECo and
jRESP frameworks, described later in this deliverable.

• WP2 focuses on the models for collaborative and competitive ensembles. The collaboration
between WP2 and WP6 focuses on integrating the modeling tools, which are gradually being
developed. This includes especially the BIP compiler, which represents a foundational block
for multiple modeling and verification tools.

• WP3 deals with knowledge modeling for ensembles. The collaboration between WP3 and WP6
follows the knowledge tool development plan. The plan focuses on the KnowLang toolset that
will include editing tools, parsers and checkers, and a knowledge reasoner. The development of
the KnowLang toolset has commenced and the integration requirements are distributed among
the partners, especially as far as the integration of the knowledge reasoner with the runtime
ensemble frameworks is concerned.

• WP4 activities concern the ensemble self expression, with modeling and simulation being
prominent. The collaboration between WP4 and WP6 involves integration of the simulation
environments. Here, ARGoS is a major simulation tool, whose integration is driven within
WP6.

• WP5 deals with the verification techniques for components and ensembles. The collaboration
between WP5 and WP6 focuses on integrating the verification tools. These are both general
verification tools that are used but were not developed within the project, such as Maude, and
project specific verification tools developed directly within the project, such as GMC.

Together with WP7 and WP8, the WP6 workpackage forms an integrated block of activities fo-
cused on applying the project results. Where WP6 provides tool integration, WP7 drives the case
studies that use the tools, and WP8 complements the tools with other ensemble software components.
The application of the tools within WP7 is described in the deliverable D7.2. The ensemble software
components of WP8 are described in the deliverable D8.2.

1.4 Tool Presentation Overview

The next sections contain a brief description of each of the tools following a unified outline. First,
the purpose of the tool is briefly outlined, together with the information on what inputs and outputs

ASCENS 7



D6.2: Second Report on WP6 (Final) November 12, 2012

the tool has. Next, the text describes what progress has been made since the last reporting period and
what is the integration perspective. Finally, for tools whose development has progressed sufficiently,
the text provides compact installation and usage directions.

To reflect the tool landscape structure, we arrange the tool descriptions into groups. In Section 2,
we place tools that deal mostly with formal modeling of ensembles. In Section 3, we describe tools that
help implement ensembles or simulations. Section 4 contains tools that provide runtime frameworks
for executing either ensembles or simulations. Finally, Section 5 deals with tools for introspection at
execution time. Of necessity, the classification categories are not entirely distinct – some tools would
fall into multiple categories. Such tools are still listed under one category only, but the tool description
reflects the complete purpose of the tool.

ASCENS 8



D6.2: Second Report on WP6 (Final) November 12, 2012

Figure 1: A jSAM specification (left) and the result of model-checking (right).

2 Modeling Tools

2.1 jSAM: Java Stochastic Model-Checker

jSAM is an Eclipse plugin integrating a set of tools for stochastic analysis of concurrent and distributed
systems specified using process algebras. More specifically, jSAM provides tools that can be used for
interactively executing specifications and for simulating their stochastic behaviors. Moreover, jSAM
integrates a statistical model-checking algorithm [CL10, HYP06, QS10] that permits verifying if a
given system satisfies a CSL-like [ASSB00, BKH] formula.

jSAM does not rely on a single specification language, but provides a set of basic classes that
can be extended in order to integrate any process algebra. One of the process algebras that are cur-
rently integrated in jSAM is STOKLAIM [DKL+06]. This is the stochastic extension of KLAIM, an
experimental language aimed at modeling and programming mobile code applications. Properties of
STOKLAIM systems can be specified by means of MOSL [DKL+07] (Mobile Stochastic Logic). This
is a stochastic logic (inspired by CSL [ASSB00, BKH]) that, together with qualitative properties, per-
mits specifying time-bounded probabilistic reachability properties, such as the likelihood to reach a
goal state within t time units while visiting only legal states is at least p. MOSL is also equipped
with operators that permit describing properties resulting from resource production and consumption.
In particular, state properties incorporate features for resource management and context verification.
Context verification allows the verification of assumptions on resources and processes in a system at
the logical level, i.e. without having to change the model to investigate the effect of each assumption
on the system behavior.

As its input, jSAM accepts a text file containing a system specification. For instance, Figure 1 (left)
contains a portion of s STOKLAIM system. The results of stochastic analyses (both simulation and
model-checking) are plotted in graphs, see Figure 1 (right).

2.1.1 Progress and Integration

During the second year of the project, an earlier version of the tool called SAM has been ported to
Java. SAM provides similar features to jSAM but is implemented in OCaML. This porting is the
necessary first step towards the integration of the tool into SDE.

ASCENS 9



D6.2: Second Report on WP6 (Final) November 12, 2012

2.1.2 Installation and Usage

jSAM can be downloaded from http://code.google.com/p/jsam, where both the binaries
and source code are available. jSAM can also be installed by relying on the Eclipse installation tools.
Detailed instructions and examples are available on the same site.

2.2 Maude Daemon Wrapper

Maude [CDE+07] is a high-performance reflective language and system supporting both equational
and rewriting logic specification and programming for a wide range of applications. It is a flexible
and general framework for giving executable semantics to a wide range of languages and models of
concurrency, and has been also used to develop several tools comprising theorem provers and model
checkers. As a matter of fact Maude is being used within ASCENS as a convenient formalism and
tool for the modeling and analysis of self-adaptive systems (see for example [BCG+12]). The Maude
Daemon Wrapper is a plugin integrating the Maude framework in the SDE environment.

Our tool is a minimal wrapper for the Maude Daemon plugin, an existing Eclipse plugin which
embeds the Maude framework into the Eclipse environment by encapsulating a Maude process into a
set of Java classes. The Maude Daemon plugin provides an API to use and control a Maude process
from a Java program, allowing to programmatically configure the Maude process, to execute it, send
commands to it, and get the results from it.

2.2.1 Progress and Integration

The Maude Daemon Wrapper has been developed during the second year of the project.

The Maude Daemon Wrapper facilitates the interaction of Maude with other tools reg-
istered to the SDE by exposing those features via the function executeMaudeCommand

(command,commandType,resultType), which takes care of initialization tasks, executes the
Maude command command, and returns part of the Maude output as specified by resultType.
A detailed description of Maude and its commands is available in the Maude manual at http:
//maude.cs.uiuc.edu/maude2-manual.

2.2.2 Installation and Usage

The Maude Daemon Wrapper plugin can be installed in Eclipse using the http://www.
albertolluch.com/updateSiteMaudeDaemonWrapper update site (Help → Install New
Software → Add). Eclipse will install all the required plugins, including the Maude Development
Tools. Before actually using the plugin, it is necessary to configure the Maude Development Tools by
setting the path of the Maude binaries in the preferences dialog (Window → Preferences → Maude
Preferences). Once installed and configured, the plugin can be tested by opening the SDE perspective
(Window→ Open Perspective→ Other→ SDE).

The input of the Maude Daemon Wrapper consists of three Java strings: a Maude command and
the command and result types. A Maude command typically contains a sequence of Maude modules
(a Maude specification) and the actual command to be executed (for example reduce t, rewrite
t, search t, with t being a Maude term). Figure 2 (left) exemplifies a Maude command defining the
algebra of Natural numbers, followed by a command to compute the sum 2 + 1. The command type
is either core or full, specifying, respectively, if we are executing a core Maude or a full Maude
command. Finally, the result type parameter is used to filter the Maude output, discarding eventual
unnecessary information (such as the number of rewrites or the time spent to execute the command).

ASCENS 10

http://code.google.com/p/jsam
http://maude.cs.uiuc.edu/maude2-manual
http://maude.cs.uiuc.edu/maude2-manual
http://www.albertolluch.com/updateSiteMaudeDaemonWrapper
http://www.albertolluch.com/updateSiteMaudeDaemonWrapper


D6.2: Second Report on WP6 (Final) November 12, 2012

Figure 2: A Maude command (left) and its evaluation (right).

As output, the tool offers a Java string containing the output generated by Maude, filtered accord-
ing to the result type given as the invocation parameter. Figure 2 (right) shows the whole Maude output
obtained executing the command in Figure 2 (left).

ASCENS 11



D6.2: Second Report on WP6 (Final) November 12, 2012

3 Implementation Tools

3.1 BIP Compiler

We have developed the behaviour, interaction, priority (BIP) component framework to support a rig-
orous system design flow. The BIP framework is:

• model-based, describing all software and systems according to a single semantic model. This
maintains the overall coherency of the flow by guaranteeing that a description at step n + 1
meets essential properties of a description at step n.

• component-based, providing a family of operators for building composite components from
simpler components. This overcomes the poor expressiveness of theoretical frameworks based
on a single operator, such as the product of automata or a function call.

• tractable, guaranteeing correctness by construction and thereby avoiding monolithic a posteriori
verification as much as possible.

BIP supports the construction of composite, hierarchically structured components from atomic
components characterised by their behaviour and interfaces. It lets developers compose components
by layered application of interactions and priorities. This enables an expressiveness unmatched by any
other existing formalism. Architecture is a first-class concept in BIP, with well-defined semantics that
system designers can analyse and transform.

Parse

Transformations

Frontend Middleend

.bip

.xml

BIP
Model
EMF

Validate
BIP

Model
EMF

C++

ASEBA

Figure 3: The BIP Compiler tool-chain.

The BIP framework is supported by a tool-chain including model-to-model transformations and
code generators (see Figure 3).

3.1.1 Progress and Integration

The BIP compiler and the core BIP tools have been recently rewritten. The BIP compiler is organized
in Java packages in a modular way, allowing the dynamic invocation of model-to-model transformers
and backends. We currently support C++ code generation, which can be executed, simulated or ex-
plored using the centralized single-thread engine. We plan to integrate the latest version of the core
BIP tools, that is, the compiler and its dedicated execution engine.

The rewrite of the BIP compiler and the core BIP tools naturally impacts the additional analysis
tools that rely on the BIP compiler, such as the D-Finder compositional verification tool. Updating
these tools is work in progress, carried out to reflect the project tool integration requirements.

ASCENS 12



D6.2: Second Report on WP6 (Final) November 12, 2012

3.1.2 Installation and Usage

Installation instructions can be found at http://www-verimag.imag.fr/New-BIP-tools.
html. The BIP compiler and engines are provided as an archive containing only the binaries needed
for executing the tool (the sources are not freely distributed). The target platforms are GNU/Linux
x86 based machines, however, the tool are known to work correctly on Mac OSX, and probably other
Unix-based systems. The tool requires a Java VM (version 6 or above), a C++ compiler (preferably
GCC) with the STL library, and the CMake build tool.

The installation itself consists of extracting the archive, adding the path to the bipc.sh compiler
to PATH, and configuring the environment variables of the engine, namely BIP2 ENGINE LIB DIR,
BIP2 ENGINE LIB GENERIC DIR, and BIP2 ENGINE SPECIFIC DIR. The archive contains
the setup.sh script that does this automatically.

In BIP, programs are organized in packages that are stored in separate files. Packages are col-
lections of BIP types, that is, of atom types, connectors types and compound (hierarchical) types.
Consider the BIP package containing an atom type MyAtom and a compound type MyCompound,
depicted on Figure 4. The package should be saved in a file name MyPackage.bip (package names
and their corresponding file names must match).

package MyPackage
port type MyPort()

atom type MyAtom()
port MyPort p()
place START,END
initial to START
on p from START to END

end

compound type MyCompound()
component MyAtom c1()

end
end

Figure 4: Example BIP package

To compile the package, first create the out directory to hold the generated C++ files. Next,
invoke the BIP compiler (bipc.sh) using bipc.sh -p MyPackage -d "MyCompound()"
--gencpp-output-dir out. The -p option is used to provide the name of the package to
compile, the -d option specifies an instance of a compound type corresponding to the system to
deploy, MyCompound in this case. The --gencpp-output-dir option sets the location for the
generation of the C++ files. Using this option automatically invokes the C++ backend, which generates
the C++ files corresponding to an instance of MyCompound.

The compilation of the generated C++ code is managed by cmake. Create a directory build in
the directory out, invoke cmake from build and then make.

Note that the BIP execution engine is currently provided as a static library which is automatically
linked when building the resulting executable system. To execute the instance of MyCompound by
the engine, simply run system, as shown on Figure 5.

Default options produce a single execution sequence, in which non-deterministic choices are re-

ASCENS 13

http://www-verimag.imag.fr/New-BIP-tools.html
http://www-verimag.imag.fr/New-BIP-tools.html


D6.2: Second Report on WP6 (Final) November 12, 2012

$ ./system
...
[BIP ENGINE]: initialize components...
[BIP ENGINE]: state #0: 1 internal port:
[BIP ENGINE]: [0] ROOT.c1._iport_decl__p
[BIP ENGINE]: -> choose [0] ROOT.c1._iport_decl__p
[BIP ENGINE]: state #1: deadlock!

Figure 5: Example BIP engine output

solved in a random fashion. The interactive mode (option --interactive) is useful whenever the
non-deterministic choices have to be resolved by the user. Computing exhaustively all the execution
sequences is achieved by using option --explore.

Detailed BIP documentation is available at http://www-verimag.imag.fr/TOOLS/
DCS/bip/doc/latest/html/index.html.

3.2 Gimple Model Checker

GMC is an explicit-state code model checker for C programs. GMC supports threads and executes
all possible interleavings to discover errors manifested only in certain thread schedules. From the
ASCENS project perspective, GMC is unique in that it can check some ensemble related properties,
such as particular sequences of accesses to the ensemble knowledge (using custom made listeners).

On the technical side, GMC detects low-level programming errors such as invalid memory us-
age (buffer overflows, memory leaks, use-after-free defects, uninitialized memory reads), null-pointer
dereferences, and assertion violations. GMC understands not only the pthread library, but also offers
means to add support for other thread libraries.

Same as other explicit state model checkers, GMC requires that the actions (steps) of the verified
program are revertible, which is not always the case (for example when accessing hardware or external
services). For such cases, the user has to create models which describe how a given action modifies
the program state and how to revert the action. GMC already contains models for the basic functions
from the standard C library.

The input of GMC is the source code of a complete program. The source code is processed via
an extended GCC compiler [SD09], which dumps a GIMPLE file – the intermediate representation
of the program used in GCC. The serialized GIMPLE representation is passed to the model checker,
which interprets it and exhaustively searches for errors. If an error is found, GMC dumps a brief error
description and an error trace which leads to the error.

3.2.1 Progress and Integration

Work on GMC in the second project year included extensions for the C++ language features, and sup-
port for custom listeners. Registered custom listeners get notified during the state space exploration as
soon as a potentially interesting action, such as a method call, an instruction executed, or backtracking
occurs. This extension distinguishes GMC for the purpose of the ASCENS project, where it can check
ensemble related properties. Multiple bugfixes and code optimizations have also been implemented.

As the development of GMC progresses, the integrated development platform will allow using
GMC on ARGoS controllers, verifying properties either encoded as assertions in the code, or specified
externally.

ASCENS 14

http://www-verimag.imag.fr/TOOLS/DCS/bip/doc/latest/html/index.html
http://www-verimag.imag.fr/TOOLS/DCS/bip/doc/latest/html/index.html


D6.2: Second Report on WP6 (Final) November 12, 2012

3.2.2 Installation and Usage

The source code of GMC is available from http://d3s.mff.cuni.cz/˜sery/gmc/index.
html. During the installation, it is necessary to compile the extended GCC and GMC itself. A
detailed step-by-step description of the installation and prerequisites can be found in the INSTALL
file, which is provided in the source code distribution.

To run the model checker, use the prepared script dist/GMC. As the first parameter, the script
takes either:

-i for Interpret – checks one random thread interleaving, or
-m for Model-check – explores all thread interleavings.

The remaining parameters are the files with the source code of the program to verify. GMC can
also be integrated directly into a build system – in this case, the modified GCC must be used during
the build, with an additional flag which prompts GCC to dump the GIMPLE file, which is later passed
to the actual model checker executable dist/ModelChecker. In this case, the arguments are still
similar to the GMC script, but instead of sources, the script expects the GIMPLE file.

˜/GMC/dist$ . ../setEnv.sh
˜/GMC/dist$ ./GMC -m example.c
SOURCES=example.c
1
GIMPLEXX FILE=gimplexx.ser
˜/GMC/dist$ cat ModelChecker stderr
Everything is OK!
Deserializing...OK.

*********
No errors detected.

Figure 6: GMC usage example

When running GMC, the result of the verification is displayed on the standard error output. It can
also be found in the dist/ModelChecker stderr file. Check Figure 6 for an output example
when no error is found, and Figure 7 for an output example with an error. If an error is found, the
output contains a description of the error and a sequence of the GIMPLE instructions that lead to the
error.

ASCENS 15

http://d3s.mff.cuni.cz/~sery/gmc/index.html
http://d3s.mff.cuni.cz/~sery/gmc/index.html


D6.2: Second Report on WP6 (Final) November 12, 2012

˜/GMC/dist$ cat ModelChecker stderr
Everything is OK!
Deserializing...OK.

*********
Uncaught exception encountered:
Program divides by zero
*********
Logger: Instructions executed:
Thread: 0, Instruction: & builtin puts (&"Rand example:"[0])
Thread: 0, Instruction: i = &gmc rand (3)
Thread: 0, Instruction: D.2069 = & GMC EXTENSIONS rand 1 (max)
...

Figure 7: GMC error trace example

ASCENS 16



D6.2: Second Report on WP6 (Final) November 12, 2012

4 Runtime Tools

4.1 ARGoS

ARGoS is a physics-based multi-robot simulator. ARGoS aims to simulate complex experiments
involving large swarms of robots of different types in the shortest time possible. It is designed around
two main requirements: efficiency, to achieve high perfomance with large swarms, and flexibility,
to allow the user to customize the simulator for specific experiments. Besides ARGoS, no existing
simulator meets both requirements. In fact, simulators that offer high efficiency typically obtain it
by sacrificing flexibility. On the other hand, flexible simulators do not scale well with the number of
robots.

To marry efficiency and flexibility, ARGoS is based on a number of novel design choices. First, in
ARGoS, it is possible to partition the simulated space into multiple sub-spaces, managed by different
physics engines running in parallel. Second, ARGoS’ architecture is multi-threaded, thus designed
to optimize the usage of modern multi-core CPUs. Finally, the architecture of ARGoS is highly
modular. It is designed to allow the user to easily add custom features (enhancing flexibility) and
allocate computational resources where needed (thus decreasing run-time and enhancing efficiency).

4.1.1 Progress and Integration

Eight versions of ARGoS have been released in the course of the last years, with both bug fixes and
new features. The webpage of ARGoS underwent extensive restyling, with the aim of simplifying its
navigation. Forums have been added to the website to provide support to beginner users and collect
tickets and feature requests.

Besides this, an article about ARGoS was published in the Linux4You magazine.1 A journal
paper about ARGoS design has been submitted to the Swarm Intelligence journal and is currently
under review.

Because ARGoS is written in C++, integrating ARGoS with the SDE requires wrapping the AR-
GoS interfaces in Java. To achieve this result, two approaches are viable: (i) manually wrapping the
relevant functions, or (ii) use automated tools such as SWIG.2

Manually wrapping the interface would potentially allow us to optimize the final result better than
through an automated method. However, the process of manually wrapping is likely to be language-
specific, while automated tools like SWIG allow to create wrappers to different languages easily.

We are considering the options of interfacing ARGoS not only with the SDE, but also directly to
SCEL-based tools such as SCELua. Thus, it will be necessary to produce at least two language wrap-
pings for the ARGoS interface — Java, for the SDE, and Lua, for SCEL-based tools. In addition, we
are also considering a Python binding, which could prove useful to promote ARGoS as an educational
tool for students and robotics enthusiasts.

For these reasons, we finally choose to pursue the SWIG approach. In practice, this approach
consists in annotating the ARGoS interfaces with C++ comments written in a special syntax defined
by the SWIG interpreter. Once annotated, the code is ready to be wrapped in any language supported
by SWIG. SWIG supports all major languages, including Java, Python, Lua, Ruby, and even PHP and
Perl. Generating the wrapper code is an automatic process performed by the command swig. For
a simple example of this approach, we suggest the reader to refer to this webpage: http://www.
swig.org/tutorial.html.

1http://www.linuxforu.com/2012/05/open-source-robotics-multi-robot-simulators
2http://www.swig.org

ASCENS 17

http://www.swig.org/tutorial.html
http://www.swig.org/tutorial.html
http://www.linuxforu.com/2012/05/open-source-robotics-multi-robot-simulators
http://www.swig.org


D6.2: Second Report on WP6 (Final) November 12, 2012

Currently, we are in the process of annotating the ARGoS interfaces. A first version of the anno-
tations is almost finished. Once finished, the resulting wrappers will require extensive testing before
reaching the next phase. The next phase consists in actually integrating the Java wrapper of ARGoS
into the SDE.

4.1.2 Installation and Usage

To install ARGoS, it is necessary to download a pre-compiled package from http://iridia.
ulb.ac.be/argos/download.php. Currently, packages are available for Ubuntu/KUbuntu (32
and 64 bits), OpenSuse (32 and 64 bits), Slackware (32 bits) and MacOSX (10.6 Snow Leopard).
A generic tar.bz2 package is available for untested Linux distributions. Once downloaded, the pre-
compiled package should be installed using the standard package installation tools.

To use ARGoS, one must run the command launch_argos. This command expects two kinds
of input: an XML configuration file and user code compiled into a library. The XML configuration file
contains all the information required to set up the arena, the robots, the physics engines, the controllers,
and so on. The user code includes the robot controllers and, optionally, hook functions to be executed
in various parts of ARGoS to interact with the running experiment.

For more information, documentation and examples, refer to the ARGoS website at http://
iridia.ulb.ac.be/argos.

4.2 jDEECo: Java runtime environment for DEECo applications

jDEECo is a Java-based implementation of the DEECo component model [BGH+12] runtime frame-
work. It allows for convenient management and execution of jDEECo components and ensemble
knowledge exchange.

The main tasks of the jDEECo runtime framework are providing access to the knowledge repos-
itory, storing the knowledge of all the running components, scheduling execution of component pro-
cesses (either periodically or when a triggering condition is met), and evaluating membership of the
running ensembles and, in the positive case, carrying out the associated knowledge exchange (also
either periodically or when triggered). In general, the jDEECo runtime framework allows both local
and distributed execution; currently, the distribution is achieved on the level of knowledge repository.

The jDEECo runtime framework can be initialized and executed either manually, via its Java API,
or inside the OSGi infrastructure [HPMS11]. In the latter case, the modules of the jDEECo runtime
framework are managed as regular OSGi services (building upon the OSGi Declarative Services).
Integration into OSGi also facilitates integration into SDE.

The input of the jDEECo runtime framework is a set of definitions of the components and en-
sembles to be executed. In general, such definitions are represented as specifically annotated Java
classes [BGH+12]. Thus, technically, the input of the jDEECo runtime framework is either a set of
Java class files, a JAR file containing the class files, or a set of class objects (in case the jDEECo run-
time is accessed directly via its Java API). Thanks to the OSGi integration, component and ensemble
definitions may be also packaged into OSGi bundles, each containing any number of the definitions.
This way, component and ensemble data can be automatically loaded whenever the bundle is deployed
in an OSGi context (the SDE platform).

4.2.1 Progress and Integration

The jDEECo runtime framework has been wholly developed during the second year of the project,
following the design of the DEECo component model.

ASCENS 18

http://iridia.ulb.ac.be/argos/download.php
http://iridia.ulb.ac.be/argos/download.php
http://iridia.ulb.ac.be/argos
http://iridia.ulb.ac.be/argos


D6.2: Second Report on WP6 (Final) November 12, 2012

Figure 8: jDEECo SDE Tool - OSGi-SDE Integration

The integration of the jDEECo runtime into SDE allows for rapid deployment, prototyping and
debugging of DEECo SCs and SCEs. Furthermore, the SDE integration platform enables easy inte-
gration with other related SC/SCE design tools such as SPL.

The jDEECo SDE plugin, integrating jDEECo into SDE, includes the jDEECo runtime imple-
mentation and an extension to the SDE management console, featuring commands for controlling the
jDEECo runtime.

The jDEECo runtime interacts with the extension to the SDE management console at the OSGi
level, as illustrated on Figure 8. During the SDE startup, both the jDEECo runtime and all of its mod-
ules (such as the knowledge repository) are started automatically by the OSGi layer of the SDE plat-
form. Similarly, OSGi bundles containing the component and ensemble definitions that are deployed
in the SDE platform (bundle jar files are placed inside the plugins folder of the SDE installation)
will be automatically loaded and registered within the jDEECo runtime. Sample components and
ensembles packaged into the OSGi-compliant bundles are available on the project website.

Due to technical and usability reasons, the version of jDEECo included in the jDEECo SDE
plugin does not support distribution of components.

4.2.2 Installation and Usage

The following instructions concern using the jDEECo runtime framework through the SDE plugin.
Instructions for using the jDEECo runtime framework through the Java API are available on the
project website at https://github.com/d3scomp/jdeeco/wiki.

To use jDEECo from SDE, download both the jDEECo SDE plugin and the jDEECo runtime
framework jar files from the project website at https://github.com/d3scomp/jdeeco and
place them in the plugins folder of the SDE installation.

After starting the SDE with the jDEECo plugin installed, the jDEECo runtime manager tool

ASCENS 19

https://github.com/d3scomp/jdeeco/wiki
https://github.com/d3scomp/jdeeco


D6.2: Second Report on WP6 (Final) November 12, 2012

entry will be shown in the tool browser window. The functions of the tool can be accessed either
via the tool description window or via the SDE shell. The main functions include start() and
stop() to start and stop the jDEECo runtime framework and execution of the registered components
and ensembles. The listAllComponents(), listAllEnsembles() and listAllKnowledge()
functions facilitate introspection of the executing components and ensembles. The full list of functions
is available in the SDE shell.

4.3 jRESP: Runtime Environment for SCEL Programs

jRESP is a runtime environment that provides Java programmers with a framework for developing
autonomic and adaptive systems based on the SCEL concepts. SCEL [DFLP11, DFLP12] identifies
the linguistic constructs for modelling the control of computation, the interaction among possibly
heterogeneous components, and the architecture of systems and ensembles. jRESP provides an API
that permits using the SCEL paradigm in Java programs.

In SCEL, some specification aspects, such as the knowledge representation, are not fixed but
can be customized depending on the application domain or the taste of the language user. Other
mechanisms, for instance the underlying communication infrastructure, are not considered at all and
remain abstracted in the operational semantics. For this reason, the entire framework is parametrised
with respect to specific implementations of these particular features. To simplify the integration of
new features, recurrent patterns are largely used in jRESP.

The jRESP communication infrastructure has been designed to avoid any centralised control.
Indeed, a SCEL program typically consists of a set of (possibly heterogeneous) components, equipped
with a knowledge repository. The components execute and cooperate in a highly dynamic environment
to achieve a set of goals. The underlying communication infrastructure is not fixed, but can change
dynamically during the computation. Hence, components can interact with each other by simply
relying on the available communication media.

Finally, to simplify the integration with other tools and frameworks, like ARGoS and jDEECo,
jRESP relies on open data interchange technologies, including json. These technologies simplify
interactions between heterogeneous network components and provide the basis on which different
runtimes for SCEL programs can cooperate.

4.3.1 Progress and Integration

The first version of jRESP has been completely developed during the second year of the ASCENS
project. The current version of jRESP is not yet integrated with SDE. The integration will take the
form of a high-level programming language, which will enrich SCEL with standard programming
primitives and thus simplify the development of SCEL programs.

4.3.2 Installation and Usage

jRESP can be downloaded from http://code.google.com/p/jresp, where both the Java
binaries and the source code are available. Detailed instructions and examples are available from the
same site.

4.4 Science Cloud Platform

The Science Cloud Platform (SCP) is the software system developed as part of the science cloud case
study of ASCENS. This implementation is intended for three purposes:

ASCENS 20

http://code.google.com/p/jresp


D6.2: Second Report on WP6 (Final) November 12, 2012

• First, it serves as an industry-inspired example of a cloud implementation and thus as a testbed
for the languages, methods, and tools developed within ASCENS.

• Second, the implementation itself is highly flexible and allows for different approaches and
ideas to be tested by integration into the platform.

• Third, the case study is intended as an application platform for end users, the end users again
being scientists.

4.4.1 Progress and Integration

During the last year, the specification of the science cloud platform has been finalized and is presented
in [vRA+12]. The first implementation aimed at creating a baseline adaptivity functionality in the form
of a failover system has been created. This system is based on OSGi and is thus able to dynamically
install, start, stop, and uninstall applications in the form of bundles. Moreover, the system itself is
based on OSGi bundle class loading and the OSGi service-oriented component infrastructure and can
thus be easily used for testing different implementations of adaptivity and self-awareness.

Since the science cloud platform is still under development, it is not yet integrated into the SDE.
It is, however, envisioned that an SDE facade can be provided for both basic lifecycle functionality
(starting, stopping) as well as runtime monitoring and control.

4.4.2 Installation and Usage

The progress of the Science Cloud Platform prototype created within the second year of ASCENS
is being tracked on http://svn.pst.ifi.lmu.de/trac/scp. While this is not the final
implementation which will be implemented as part of task 7.2.4 in months M32 to M48, it still serves
as a target to test the ASCENS methods and tools against. On this web site, the source code is also
provided under an EPL license.

The prototype is built on top of Java and OSGi and comes with a modular structure which allows
for replacement of individual parts as required by the research efforts. The platform can be installed
as a standalone JAR and started via command line or installed via update site into Eclipse.

To use the science cloud platform, it needs to be started multiple times, preferably on different
machines. After startup, a web frontend allows querying the individual nodes, adding new links, and
deploying applications. Each instance uses two ports, one for inter-client communication and one
for the UI. At startup, the port numbering starts at 8000, the port number gets increased if multiple
instances are started on the same host. To view the web UI of the first instance, visit http://
localhost:8001. Port 8000 is reserved for inter-client communication.

ASCENS 21

http://svn.pst.ifi.lmu.de/trac/scp
http://localhost:8001
http://localhost:8001


D6.2: Second Report on WP6 (Final) November 12, 2012

5 Introspection Tools

5.1 SPL

SPL is a Java framework for implementing application adaptation based on observed or predicted
application performance [BBH+12]. The framework is based on the Stochastic Performance Logic,
a many-sorted first-order logic with inequality relations among performance observations. The logic
allows to express assumptions about program performance and the purpose of the SPL framework is
to give software developers an elegant way to use it to express rules controlling program adaptation.

The SPL framework internally consists of three parts that work together but can be (partially) used
independently. The first part is a Java agent that instruments the application and collects performance
data. The agent uses the Java instrumentation API [Ora12], the actual byte code transformation is done
using the DiSL framework [MZA+12]. The second part of the framework offers an API to access the
collected data and evaluate SPL formulas. The third part of the framework implements the interface
between the application and the SPL framework. This API is used for the actual adaptation.

The purpose of the SPL framework is to support the adaptation of an application, however, the
adaptation itself happens through means provided by the application. The framework itself does not
add the actual ability to adapt. An example of an adaptation action is replicating a component in face
of load changes – this action can even be provided by the platform running the application, and is
considered in some of the scientific cloud use cases.

The highlights of the SPL framework are:

• The rules controlling the adaptation are described in an elegant manner using simple-to-
understand formulas.

• The performance measurements use run-time bytecode instrumentation without any need to
change (or even to access) the existing source code.

• The framework can be used with any Java application.

5.1.1 Progress and Integration

The SPL framework has been entirely developed during the second year of the project. The integration
of the SPL tool into the SDE platform is a work in progress.

5.1.2 Installation and Usage

The latest version of the SPL framework can be obtained from the source repostiory at http://
github.com/vhotspur/spl-adaptation-framework. There are two examples available,
both can be run using the provided build.xml file and Apache Ant.

To use the tool on a different application than the provided examples, the user needs to prepare the
agent JAR package and start the agent together with the application. As an argument to the agent, the
user specifies the class that takes care of the monitoring and adaptation activities. This class should
use the provided SPL framework API, which can evaluate an SPL formula over data from modular
data sources, as described in [BBH+12].

To demonstrate how the SPL framework can be used to control application adaptation, a demo
application is also included. The demo simulates a web store where the clients browse and purchase
the available goods. The adaptation mechanism replicates certain components of the store when the
number of clients increases and the store becomes overloaded.

ASCENS 22

http://github.com/vhotspur/spl-adaptation-framework
http://github.com/vhotspur/spl-adaptation-framework


D6.2: Second Report on WP6 (Final) November 12, 2012

Figure 9: Adaptation demo web monitor.

The demo uses the iPOJO [EHL07] component framework for both the individual application
components and the adaptation logic. The application also offers a web-based monitoring interface,
see Figure 9.

The adaptation logic of the demo uses a simple SPL formula to detect when the average time to
process a user request exceeds a given limit. This event triggers the component replication. Con-
versely, if the time falls well below the limit, one replica is stopped. The number of simulated clients
and the adaptation strategy can be configured through the web interface, which also shows the number
of requests that were not satisfied within the time limit.

The demo is available as a Git repository http://github.com/vhotspur/
spl-adaptation-demo. The demo is started from the command line using ant run.
When the demo runs, the web interface is available at http://localhost:8888.

ASCENS 23

http://github.com/vhotspur/spl-adaptation-demo
http://github.com/vhotspur/spl-adaptation-demo


D6.2: Second Report on WP6 (Final) November 12, 2012

6 Conclusion

The project structure is organized so that the tool development process is driven by two factors, namely
the development of the methods and techniques for engineering ensembles, and the application of the
methods and techniques on the case studies. As outlined in the relevant deliverables, both directions
have progressed – the methods and techniques for engineering ensembles have progressed enough for
the first models to appear and be applied on the case studies (Subtasks T7.x.2). The tool development
reflects this and from the project management perspective is therefore generally on track.

The integration and simulation activities of the case studies (Subtasks T7.x.3) have begun and will
progress for the next year. This progress is reflected in the tool implementation and integration efforts,
which place emphasis on opening the tool development to all project partners and providing sufficient
support and documentation to facilitate tool integration. Technically, this constitutes having public tool
source repositories where possible, providing tool usage examples, and organizing meetings between
tool authors and tool users within the project whenever necessary (the meetings take place both within
and outside the framework of the regular project meetings).

From the tool integration perspective, an important project step is the availability of the first tool
application examples. These make it possible to move the work on tool integration from the stage of
conceptual interoperability to the stage of implementing and debugging the interoperability support in
the context of the individual examples. Currently, prominent directions in tool integration include ap-
plication of the GMC tool on the ARGoS robot controllers, application of the SPL tool on the jDEECo,
jRESP and SCP runtime platforms for implementation of performance awareness, and application of
the jSAM tool on the relevant models developed within the case studies ; additional tool integration
opportunities are envisioned as the tool implementation progresses.

Finally, the implementation and evaluation activities of the case studies (Subtasks T7.x.4), which
are scheduled for the concluding phase of the project, will also impact the tool implementation and
integration efforts. To prevent unexpected disruptions in later project stages, which might be difficult
to reflect at implementation level due to additional development effort requirements, we already stress
the application of the tools on examples motivated by the case studies – such as the use of the robotic
playground example in the jDEECo tool tutorial.

ASCENS 24



D6.2: Second Report on WP6 (Final) November 12, 2012

References

[ASSB00] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Model checking continuous time Markov
chains. Transations on Computational Logic, 1(1):162–170, 2000.

[BBH+12] Lubomir Bulej, Tomas Bures, Vojtech Horky, Jaroslav Keznikl, and Petr Tuma. Perfor-
mance Awareness in Component Systems: Vision Paper. COMPSAC ’12, 2012.

[BCG+12] Roberto Bruni, Andrea Corradini, Fabio Gadducci, Alberto Lluch Lafuente, and An-
drea Vandin. Modelling and analyzing adaptive self-assembly strategies with maude. In
Proceedings of the 9th International Workshop on Rewriting Logic and its Applications
(WRLA 2012), number 7571 in LNCS, pages 18–138, 2012.

[BGH+12] Tomas Bures, Ilias Gerostathopoulos, Vojtech Horky, Jaroslav Keznikl, Jan Kofron,
Michele Loreti, and Frantisek Plasil. Language Extensions for Implementation-Level
Conformance Checking. ASCENS Deliverable D1.5, 2012.

[BKH] C. Baier, J.-P. Katoen, and H. Hermanns. Approximate symbolic model checking of
continuous-time Markov chains. pages 146–162.

[CDE+07] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martı́-Oliet, José
Meseguer, and Carolyn L. Talcott. All About Maude, volume 4350 of LNCS. Springer,
2007.

[CL10] Francesco Calzolai and Michele Loreti. Simulation and analysis of distributed systems in
klaim. In Dave Clarke and Gul A. Agha, editors, Coordination Models and Languages,
12th International Conference, COORDINATION 2010, Amsterdam, The Netherlands,
June 7-9, 2010. Proceedings, volume 6116 of Lecture Notes in Computer Science, pages
122–136. Springer, 2010.

[DFLP11] R. De Nicola, G. Ferrari, M. Loreti, and R. Pugliese. Languages primitives for coordina-
tion, resource negotiation, and task description. ASCENS Deliverable D1.1, September
2011. http://rap.dsi.unifi.it/scel/.

[DFLP12] R. De Nicola, G. Ferrari, M. Loreti, and R. Pugliese. A language-based approach to
autonomic computing. In Proc. of the 10th International Symposium on Software Tech-
nologies Concertation on Formal Methods for Components and Objects (FMCO 2011),
Lecture Notes in Computer Science. Springer, 2012. To appear.

[DKL+06] R. De Nicola, J.-P. Katoen, D. Latella, M. Loreti, and M. Massink. Klaim and its stochas-
tic semantics. Technical report, Dipartimento di Sistemi e Informatica, Università di
Firenze, 2006.

[DKL+07] Rocco De Nicola, Joost-Pieter Katoen, Diego Latella, Michele Loreti, and Mieke
Massink. Model checking mobile stochastic logic. Theoretical Computer Science,
382(1):42–70, 2007.

[EHL07] C. Escoffier, R.S. Hall, and P. Lalanda. ipojo: an extensible service-oriented component
framework. In Services Computing, 2007. SCC 2007. IEEE International Conference on,
pages 474 –481, july 2007.

[HPMS11] R. Hall, K. Pauls, S. McCulloch, and D. Savage. Osgi in Action: Creating Modular
Applications in Java. Manning Pubs Co Series. Manning Publications, 2011.

ASCENS 25

http://rap.dsi.unifi.it/scel/


D6.2: Second Report on WP6 (Final) November 12, 2012

[HYP06] G. Norman H. Younes, M. Kwiatkowska and D. Parker. Numerical vs. statistical proba-
bilistic model checking. International Journal on Software Tools for Technology Transfer,
8(3):216–228, June 2006.

[MVZ+12] Lukas Marek, Alex Villazón, Yudi Zheng, Danilo Ansaloni, Walter Binder, and Zhengwei
Qi. DiSL: a domain-specific language for bytecode instrumentation. In AOSD ’12: Pro-
ceedings of the 11th International Conference on Aspect-Oriented Software Development,
pages 239–250, 2012.

[MZA+12] Lukáš Marek, Yudi Zheng, Danilo Ansaloni, Walter Binder, Zhengwei Qi, and Petr Tuma.
DiSL: An extensible language for efficient and comprehensive dynamic program analysis.
In Proc. 7th Workshop on Domain-Specific Aspect Languages, DSAL ’12, pages 27–28,
New York, NY, USA, 2012. ACM.

[Ora12] Oracle. java.lang.instrument (java platform se 6), 2012.

[QS10] Paola Quaglia and Stefano Schivo. Approximate model checking of stochastic COWS.
In Proc. of TGC 2010. To appear., 2010.

[SD09] Richard M. Stallman and GCC DeveloperCommunity. Using The Gnu Compiler Collec-
tion: A Gnu Manual For Gcc Version 4.3.3. CreateSpace, Paramount, CA, 2009.

[vRA+12] Nikola Šerbedžija, Stephan Reiter, Maximilian Ahrens, José Velasco, Carlo Pinciroli,
Nicklas Hoch, and Bernd Werther. D7.2: Second Report on WP7: Ensemble Model Syn-
theses with Robot, Cloud Computing and e-Mobility. ASCENS Deliverable, November
2012.

ASCENS 26


	Introduction
	Integration Environment
	Current Tool Landscape
	Collaboration With Other Workpackages
	Tool Presentation Overview

	Modeling Tools
	jSAM: Java Stochastic Model-Checker
	Progress and Integration
	Installation and Usage

	Maude Daemon Wrapper
	Progress and Integration
	Installation and Usage


	Implementation Tools
	BIP Compiler
	Progress and Integration
	Installation and Usage

	Gimple Model Checker
	Progress and Integration
	Installation and Usage


	Runtime Tools
	ARGoS
	Progress and Integration
	Installation and Usage

	jDEECo: Java runtime environment for DEECo applications
	Progress and Integration
	Installation and Usage

	jRESP: Runtime Environment for SCEL Programs
	Progress and Integration
	Installation and Usage

	Science Cloud Platform
	Progress and Integration
	Installation and Usage


	Introspection Tools
	SPL
	Progress and Integration
	Installation and Usage


	Conclusion

