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Executive Summary

This document presents two SCEL realizations – jRESP and jDEECo – which implement the con-
cepts of SCEL in Java with the aim to allow for implementation-level conformance checking. jRESP
focuses on providing an API for SCEL communication paradigms, thus it allows rapid prototyping of
SCEL-based application. On the other hand, jDEECo provides a reification of SCEL geared towards
systematic development of large-scale software systems using SCEL concepts. As such jDEECo
provides explicit first-class concepts of reusable components and ensembles. Those two frameworks
(jRESP and jDEECo) thus act in synergy covering development needs from rapid prototyping to
large-scale system development. In addition to describing jRESP and jDEECo as the foundation
for implementation-level conformance checking, the document outlines particular directions in the re-
lated verification methods. Namely, it presents a method of using JPF for functional verification and
demonstrates how performance aspects are represented in the form of knowledge, thus unifying the
view on functional correctness and performance aspects of the software.
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1 Introduction

SCEL is a formal modeling language. To be able to reason about implementation-related proper-
ties of SCEL-based applications, it is necessary to provide extensions of SCEL in the direction of
implementation-level primitives, i.e., to map the concepts of SCEL to the concepts of the implemen-
tation level and address implementation-related concepts not explicitly covered by SCEL. In this de-
liverable we thus overview the basic concepts of SCEL and describe two complementary approaches
to allow application development based on SCEL paradigms. The approaches are jRESP and DEECo
(in particular the Java-based implementation of DEECo named jDEECo).

jRESP provides faithful mapping of SCEL to Java programming language. Most importantly,
jRESP provides an API for SCEL communication paradigms. Being relatively lightweight and pre-
scribing no dedicated architecture or patterns in the target Java application, it is ideal of rapid proto-
typing of SCEL applications and experimenting with core SCEL concepts.

DEECo, on the other hand, targets systematic engineering of potentially large-scale distributed
systems. To do so, DEECo reifies SCEL by adding explicit first-class architectural concepts and re-
stricts SCEL communication paradigms to ease component development and to allow for effective
communication in the context of loosely coupled and unreliable communication networks. In partic-
ular, DEECo features reusable first-class architectural concepts for both components and ensembles,
which allows for explicit system architecture. DEECo itself is thus a component model based on
SCEL. The implementation of DEECo in Java is provided by jDEECo, which provides mapping of
components and ensembles to Java and provides component runtime that takes care of the component
execution and communication.

Having different goals, the two approaches act in synergy and together they address the full range
of development needs from rapid prototyping and experiments with SCEL paradigms (addressed by
jRESP) to large-scale system development with reusable assets and well-defined architecture (ad-
dressed by jDEECo). This positioning and relationship of SCEL, jRESP, DEECo and jDEECo is
summarized in Figure 1.

In addition to jRESP and DEECo/jDEECo, the document describes the strategy for verification
of functional properties of implementations of SCEL-based applications and also discusses a way of
utilizing observed performance of SCEL-based application as the component knowledge.

1.1 Relation to other WPs

By focusing on the implementation aspects of SCEL, the work presented in this report is closely
connected to several other work-packages in this project. We briefly overview these connections and
synergies below:

• WP3 brings in techniques for knowledge representation and manipulation (KnowLang and
KnowLang Reasoner). We plan to integrate these with the approaches to implementation of
SCEL-based applications described in this report. In particular, we intend to employ them to
define semantics of knowledge both at design and implementation level of SCEL components
and ensembles, in particular, this includes handling of derived and uncertain knowledge.

• WP4 focuses on formalization of system requirements (SOTA and GEM). These are planned to
be used in the design process of SCEL components and ensembles (as detailed in Section 6.5).
Furthermore, WP4 will provide methods for performance monitoring and prediction, for which
the implementation aspects of SCEL will serve as a foundation.

• WP5 aims at providing methods for verification of component’s code. These methods are to be
based on the hereby proposed mapping of SCEL-based paradigms to the Java-language.
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• WP6 integrates tools developed within the project to a common workbench. The approaches
to executing SCEL-based applications (i.e., jRESP and jDEECo) are thus included in WP6 as
component runtime platforms.

• WP7 focuses on case-studies. These are going to be based on jRESP and jDEECo. In particu-
lar, the initial results of using jDEECofor addressing the e-mobility case-study are already part
of the D7.2 [S+12].

• WP8 aims at engineering of service components and related best practices. In this respect, this
report describes initial proposal for high-level design of SCEL-based applications. Additionally,
the components implemented using jRESP and jDEECo concepts are going to be included in
the service component repository, which is part of D8.2 [HBGK12].

1.2 Structure of the Report

The structure of the deliverable is as follows: In Sect. 2, the SCEL design concepts are described.
In Sect. 3 jRESP is described. DEECo and its Java-based implementation jDEECo is described in
Sect. 4 and Sect. 5 respectively. Sect. 5 further provides discussion of verification of functional prop-
erties of SCEL-based application implemented in jDEECo. Sect. 6 reports on initial experiments with
a design method for distilling SCEL-based architecture (with DEECo flavour) from initial system re-
quirements. Sect. 7 describes work in progress on how performance is viewed as a form of knowledge
and outlines the methods for collecting and interpreting performance indicators. Sect. 8 concludes the
deliverable and states the ongoing steps.

SCEL

DEECo

jRESP

jDEECo

reifies while adding concepts 
for capturing system 
architecture

Java framework 
conforming to concepts of

Java framework 
conforming to concepts of

large-scale development
more explicit structure

rapid prototyping, experiments
more endogenous structure

conceptual level

implementation level

Figure 1: Relationships among SCEL, jRESP, DEECo, and jDEECo
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2 SCEL: Design Principles

SCEL provides abstractions explicitly supporting autonomic computing systems in terms of Behav-
iors, Knowledge and Aggregations, according to specific Policies.

Behaviors describe how computations progress. These abstractions are modeled as processes exe-
cuting actions, in the style of standard process calculi. Interactions come in when components access
data in the knowledge repositories of other components. Adaptation emerges as the result of knowl-
edge acquisition and manipulation.

Knowledge provides the high level primitives to manage pieces of relevant information coming
from different sources. Knowledge is represented through items stored in repositories. Knowledge
items contain either application data or awareness data. The former are used to determine the progress
of component computations, while the latter provide information about the environment in which the
different components are running (e.g. monitored data from sensors) or about the actual status of an
autonomic component (e.g. about its current position or the remaining battery’s charge level). We
assume that each knowledge repository handling mechanism provides three abstract operations that
can be used by autonomic components to add new knowledge to the repository, to retrieve knowledge
from the repository and to withdraw knowledge from it.

Aggregations describe how different entities are brought together to form components and systems,
and to offer the possibility to construct the software architecture of autonomic systems. The compo-
sition of components and their interactions is implemented by exploiting the notion of interface that
can be queried to determine the attributes and the functionalities provided and/or required by compo-
nents. Ensembles are specific aggregations of components that represent social or technical networks
of autonomic components. The key point is that the formation rule is dynamic, based on the knowl-
edge endogenous to components: components of an ensemble are connected by the interdependency
relations established in their interfaces. Therefore, an ensemble is not a rigid fixed network, but rather
a dynamic graph-like structure where component links are dynamically established.

Policies control and adapt the actions of the different components, in order to guarantee the
achievement of specific goals, or the satisfaction of specific properties. Since few assumptions can
be made about the operational environment, that is frequently open, highly dynamic, and possibly
hostile, the ability of programming and enforcing a finer control on behavior is essential to assure that,
for instance, valuable information is not lost. Policies are the mean to guarantee such control. Inter-
action policies and Service Level Agreement (SLA) policies provide two standard examples of policy
abstractions. Other examples are security properties maintaining the right linkage between data values
and their associated usage policies (data-leakage policies), or limiting the flow of sensitive information
to untrusted sources (access control and reputation policies).

All these abstractions are aggregated by means of the notion of autonomic component. An auto-
nomic component I[K,Π, P ] consists of:

1. an interface I, publishing and making available structural and behavioral information about the
component itself;

2. a knowledge manager K, managing both application data and awareness data, together with the
specific handling mechanism;

3. a set of policies Π, regulating the interaction between the different internal parts of the compo-
nent and the interaction of the component with the others;

4. a process P together with a set of process definitions that can be dynamically activated. Some
of the processes in P perform local computation, while others may coordinate processes inter-
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action with the knowledge repository, and deal with the issues related to adaptation and recon-
figuration.

A component’s interface can be inquired to extract information about the component, its status
or its execution environment, as well as the services offered by the component. In fact, the interface
provides a set of attributes characterizing the component itself. Among these attributes, attribute id
is mandatory, and is bound to the name of the component. Additional attributes might, for instance,
indicate the battery’s charge level and the component’s GPS position. Suitable attributes are also used
to indicate the provided services and their signature. Notably, the whole information provided by
the component interface is stored in the local knowledge of the component and therefore can be dy-
namically manipulated by means of the operations provided by the knowledge repositories’ handling
mechanisms.

SCEL puts together concepts and abstractions for development of autonomic computing systems.
It specifies them, however, at a relatively high level. To be able to evaluate properties (including
non-functional ones) of real applications, it is necessary first to map the SCEL concepts to those
on the implementation level, and second to provide a sufficient set of SCEL extensions to address
platform-specific issues not covered by SCEL itself. In the project, we face this via two complemen-
tary approaches – jRESP and jDEECo, which are described in the following sections.

3 jRESP – A Runtime Environment for SCEL Programs

In this section we present jRESP1. This is a Java runtime environment that aims at providing pro-
grammers with a framework that allows for the development of autonomic and adaptive systems ac-
cording to the SCEL [DFLP11, DFLP12] paradigm. The main objective of jRESP is to be a re-
alization of SCEL in Java, which is faithful enough and easy to start with to be suitable for rapid
prototyping and experiments with SCEL.

3.1 Design Principles

SCEL identifies linguistic constructs to model in a uniform way the control of computation, the inter-
action among possibly heterogeneous components, and the architecture of systems and ensembles. A
SCEL program consists of a set of (possibly heterogeneous), components, equipped with their own
knowledge repository, that concur and cooperate to achieve a set of goals. The underlying communi-
cation infrastructure is not fixed, but can change dynamically during the computation. That said, a first
principle followed in design and implementation of jRESP is avoiding centralized control. In particu-
lar, components are able to interact with each other by simply relying on the available communication
media.

Moreover, in the definition of SCEL, some categories, like knowledge and policy, are not fixed
but can be identified time to time according to the specific application domain or to the taste of the
language user. Other mechanisms, such as, for instance, the underlying communication infrastruc-
ture, are not considered at all, and are, instead, abstracted in the operational semantics. For these
reasons, the while framework is parametric with respect to specific implementations of above men-
tioned features. Design patterns have been largely used in jRESP to simplify development of specific
implementations of knowledge, policies and underlying communication infrastructure.

Finally, to simplify the integration with other tools/framework (such as ARGoS [PTO+11] and
DEECo2), jRESP relies on open technologies like, for instance, json 3. Such tools, by providing

1http://code.google.com/p/jresp/
2https://github.com/d3scomp/JDEECo
3http://www.json.org
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cooperate.

Components The central element of RESP is the class Node. This class
provides the implementation for a generic SCEL component1. The overall
infrastructure of a generic node is reported in Figure 1.

We assume that each node is executed over a virtual machine or a phys-
ical device that provides the access to: input and output devices and net-
work connections. Each node contains: a knowledge; a set of running pro-
cesses/threads; and a policy.

Like for a SCEL components, structural and behavioural information
about a node can be collected into an interface. This is rendered in RESP
via a set of attribute collectors that, reading values from the knowledge,
publish and and make available attribute values in the interface.

Nodes interact with each other via ports. These provide mechanism for
supporting both one-to-one and gruop communications.

1From now on we will use node to refer to instances of class Node, while component
will indicate a SCEL component.

4

Figure 2: Node architecture

mechanisms for data-interchange format, simplify the interactions between heterogeneous network
components and provide the basis on which different runtime for SCEL programs can cooperate.

3.2 Components

The central element of jRESP is the class Node. This class provides the implementation for a generic
SCEL component4. The overall infrastructure of a generic node is reported in Figure 2.

We assume that each node is executed over a virtual machine or a physical device that provides
the access to input/output devices and to network connections. Each node contains: a knowledge; a
set of running processes/threads; and a policy. Structural and behavioral information about a node can
be collected into an interface via a set of attribute collectors. Nodes interact with each other via ports.
These provide mechanism for supporting both one-to-one and group communications.

3.3 Knowledge

In jRESP a Knowledge is an interface that identifies a generic knowledge repository and indicates
the high level primitives to manage pieces of relevant information coming from different sources. This
interface contains the methods that can be used to add, get, and query from piece of knowledge from
a repository.

Class Tuple, defined in the same package as Knowledge, identifies the basic information item. It
consists of a sequence of values, (i.e. Objects), that can be collected into a knowledge repository.

To identify the tuples to get/query from a knowledge repository, an instance of class Template is
used. A Template consists of a sequence of TemplateField. The latter is an interface providing the
single method match( Object o ): boolean. Class Template relies on method match to verify if
a Tuple can be selected or not. Indeed, a tuple matches a template if both have the same number of
elements and the corresponding element matches.

Currently, a single implementation of interface Knowledge is available in jRESP. Class
TupleSpace in package org.cmg.ml.resp.knowledge.ts provides an implementation for a
Linda [Gel85] tuple space.

4From now on we will use node to refer to instances of class Node, while component will indicate a SCEL component.
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3.4 Sensors

To retrieve data from external input devices, nodes are equipped with sensors. These are instances
of class Sensor that can be used to identify a generic source of information. Each sensor can be
associated to a logical or physical device providing data that can be used by processes and that can
be the subject of adaptation. Each sensor exports data as a tuple that is made available in the node
knowledge.

3.5 Actuators

Instances of class Actuator can be used to send data to external components or devices. Similarly to
Sensor, an instance of class Actuator can be used to control an external component that identifies
a logical/physical actuator. Processes can pass values to actuators by relying on standard SCEL
operations on knowledge.

3.6 Attributes and Atribute Collectors

An attribute is defined as a pair (name,value). Attributes can be published in a node interface via at-
tribute collectors. Attribute collectors can be implemented by extending abstract class AttributeCol-
lector. When a node receives a request for an attribute a, the corresponding collector is selected.
Hence, this interacts with the node knowledge to compute the actual attribute value.

3.7 Ports and Network Infrastructure

Each node is equipped with a set of ports that are able to handle both point-to-point interactions and
group interactions (ensemble oriented). Indeed, a port provides a generic communication channel that
follow a specific communication protocol.

Currently the following ports are available:

• InetPort, this kind of ports uses TCP to point-to-point interactions and UDP for the group ones;

• ServerPort, in this case a centralized server is used to collect and dispatch nodes’ actions;

• VirtualPort, this is used to simulate nodes running on virtual devices.

Each port is identified by a physical address. For instance, in the case of InetPort, this is the
inet-address associated to the socket where a thread is waiting for incoming connections.

3.8 Agents

Agents are the jRESP active computational units and are threads used to program the behavior of
SCEL processes. The abstract class Agent provides the methods to manage shared knowledge repos-
itories by withdrawing/retrieving/adding information items from/to a knowledge repository. These
methods extend the one considered in Knowledge with another parameter identifying the, (possibly
remote) node where the target knowledge repository is located.

A target can be either a point-to-point address, a group or self. These are implemented via classes
PointToPoint, Group and Self, respectively. A point-to-point address univocally identifies the target
of the considered action. A group identifies all the nodes that satisfy a given predicate on nodes
attributes. Special target Self is used to refer to the node where an agent is running.

To program a specific process behavior, sub-classes of Agent must provide an implementation for
abstract methods doRun(). The latter is the one that is invoked when an agent is executed at a node.
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Figure 3: Basic DEECo entities and their relationship

3.9 Policies

Policies are attached to a node in order to control and adapt the performed actions, to guarantee the
achievement of specific goals, or the satisfaction of specific properties. In particular, when an agent
invokes a method, this is first delegated to the policy associated.

Policies are organized in a stack. The policy at one level relies on the one at the level below to
actually execute SCEL actions. The policy at the lower level is the one that allows any operation.

4 DEECo – Dependable Emergent Ensembles of Components

In this section, we describe the DEECo component model [KBPK12], which is a reification of SCEL
targeting large-scale system development with explicit architectural concepts of components and en-
sembles.

4.1 Design Principles

Being a specialization of SCEL, DEECo is based on same main design concepts (Figure 3). Specif-
ically, DEECo allows for the design of systems consisting of autonomous, self-aware, and adaptable
components, which are implicitly organized in groups called ensembles.

Reifying the SCEL concepts, the main idea is to manage all the dynamic aspects of the service-
component environment by externalizing the distributed communication between service components
into a component framework. We propose a particular way of perceiving a component, i.e., as a
self-aware unit of computation, relying solely on its local knowledge that is subject to external mod-
ification during the execution time. The communication of such components is represented as knowl-
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edge exchange, entirely externalized and automated within the DEECo runtime framework. Thus, the
components are programmed as autonomous units, without relying on whether/when the knowledge
exchange is performed. This makes the components very robust and suitable for rapidly-changing
environments.

Conceptually, the role of the DEECo runtime framework is to perform scheduling of components’
processes, and carry out knowledge exchange of ensembles.

These DEECo concepts can be easily mapped back to the SCEL concepts. We will show such
mapping for the particular DEECo concepts in the following sections.

4.2 Component Structure

Similar to SCEL, a component is an autonomous unit of deployment and computation; it consists of
knowledge, exposed via a set of component interfaces, and processes (Figure 3). However, unlike
SCEL, DEECo components do not comprise specific policies. Instead, DEECo prescribes the same
policy for all components; the semantic role of the policy in knowledge access and exchange will be
explained in Section 4.2 and Section 4.3, respectively.

4.2.1 Knowledge

Knowledge reflects the state (i.e., data) and functionality (i.e., executable functions) of the component.
As a SCEL specialization, DEECo provides a general description of both the knowledge representation
and knowledge handling mechanisms.

Knowledge representation is defined as a mapping from knowledge identifiers to knowledge values.
The knowledge repository is a bag of pairs of the form 〈“identifier”, value〉 – the knowledge
items. The knowledge values are either executable functions without side effects or statically-
typed (structured) data. In particular, the identifier of a sub-value of a structured value is rep-
resented as a structured name reflecting the value’s internal structure. The top-level value is
always the whole component knowledge, identified by the component’s id. For example, if the
component with id Car1846a has a knowledge item named position consisting of two floating-
point-number fields named x and y, the identifier of the x field will be Car1846a.position.x.

In the knowledge representation, only the unstructured values (e.g., Car1846a.position.x) are
actually stored, while the structured ones (e.g., Car1846a.position) are regarded as an aggrega-
tion of their sub-values. For example, in case of the Car1846a component, its knowledge repre-
sentation would contain only the tuples 〈“Car1846a.position.x”, vx〉 and
〈“Car1846a.position.y”, vy〉, for some concrete values vx and vy. The value of
Car1846a.position would be aggregated from these tuples.

In addition to user-defined value types, DEECo introduces two collection types – map and
list. While map is represented in the same way as described above (i.e., the keys of the
values in the map are directly used in the structured value identifiers), the values in a list
are given implicit identifiers based on their position in the list. For example, the individ-
ual values of the list Car1846a.checkpoints have the identifiers Car1846a.checkpoints.0,
Car1846a.checkpoints.1 . . . Car1846a.checkpoints.(n− 1), where n is the size of the list.

Knowledge handling mechanism in DEECo mediates reading/writing/withdrawing the above-de-
scribed knowledge values. Specifically, focus is put on structured values. These are in DEECo
manipulated by the component’s processes as in-memory structures/objects. Therefore, as a
structured value is serialized into a set of tuples containing the value’s unstructured sub-values,
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component Car1846a ... :
knowledge:

id: ComponentID = ”Car1846a”;
position: Position = {

x: Real = 1.0;
y: Real = 2.0;

};
checkpoints: list Position = { {x = 1.5; y = 1.2;}; ... };
findNearest: fun(in checkpoints: list Position, out nearest: Position) = { ... };
...

...

Figure 4: DEECo DSL knowledge representation example

the knowledge representation ensures aggregation/splitting of the structured values when read-
ing/writing. This, in addition to the identifier convention for the collection types (i.e., map and
list), represents a general mechanism to access structured values. All the knowledge handling
operations, including reading/writing structured values and collections, are performed atomi-
cally.

Since DEECo employs an implicit interaction mechanism among components, the knowledge
handling mechanism limits a component to access only its own knowledge. Therefore, from the
SCEL perspective, only the target self is allowed by the DEECo component policy to all knowl-
edge handling actions, i.e., get/qry/put (the inter-component knowledge access is discussed in
Section 4.3).

Building on our close collaboration with WP3, we expect the knowledge representation and han-
dling semantics to be further elaborated towards KnowLang (D3.2, [VHM+12]). A promising ap-
proach appears to be extending the basic DEECo knowledge value types with the KnowLang concepts
for representing factual knowledge, in terms of concept/object trees and uncertain knowledge. In
the future, we intend to employ the product of the KnowLang Compiler as the actual representation
format of component knowledge. This way, there is a potential to extend the DEECo knowledge han-
dling mechanism with the features of the KnowLang Reasoner (i.e., the ASK and TELL operators), as
outlined in Section 5.3, thus equip the components with derived knowledge.

Before employing KnowLang as envisioned above, we use a simple DSL (Domain-Specific Lan-
guage) for describing the knowledge structure of a component, which integrates well with the DEECo
DSL capturing the other DEECo concepts. In the DSL, the knowledge values are represented as hi-
erarchically organized key/value sets, with specific syntactic constructs for capturing lists, executable
functions, and function parameters. An example of knowledge representation is shown in Figure 4.
Here, the knowledge representation of the component Car1846a comprises a structured value posi-
tion of type Position (consisting of two unstructured values x and y), a list of Position values named
checkpoints, and a function findNearest with one input parameter checkpoints (of type list of Position)
and one output parameter nearest (of type Position).

4.2.2 Interface

In general, the knowledge of a component is exposed to the environment via a set of interfaces. An
interface represents a partial view on a component’s knowledge. Specifically, interfaces of a single
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interface Car:
position: Position;
checkpoints: list Position;

component Car1846a features Car, ... :
...

Figure 5: DEECo DSL interface representation example

component can overlap, and multiple components can provide the same interface, thus allowing for
polymorphism. Technically, an interface relates to a selection of identifiers and types of knowledge
values, forming a “template” for component knowledge.

In SCEL, all the DEECo interfaces would be merged into a single SCEL component interface.
An example of an interface of the Car1846a component is shown in Figure 5, exposing the posi-

tion and checkpoints knowledge values.

4.2.3 Process

Each process of a component is essentially a thread, which operates upon the knowledge of the com-
ponent. Compared to SCEL, DEECo distinguishes the notions of process – the activity performing
computation – and function – the definition of a computation.

Specifically, a process employs a function from the knowledge of the component to perform a
computation. Since all functions are assumed to have no side effects, a process comprises a mapping
of the component’s knowledge to the actual parameters of the employed function (input knowledge),
as well as a mapping of the return value back to the knowledge (output knowledge). In other words,
the responsibility of a process is to read the input knowledge, call the associated function, and write
the outcome of the function back into the knowledge.

Being active entities of computation, DEECo processes are subjects to scheduling. A process can
be either periodic or triggered. Since the processes run concurrently, it is necessary to apply suitable
knowledge-access policies to maintain knowledge consistency. Reflecting the anticipated use of the
two process kinds, DEECo applies a tailored policy to either of them.

In SCEL, both DEECo processes and functions would be mapped to specific kinds of SCEL pro-
cesses.

Periodic process is executed repeatedly in a given period. The knowledge-access policy for a peri-
odic process ensures that reading the input knowledge, as well as writing the output knowledge,
is considered an atomic step. Nevertheless, interleaving of other processes is possible between
the reading and writing steps. Thus, such interleaving may lead to the execution of a process
with “old” input values. Such periodic processes are suitable for repetitive tasks, such as pro-
cessing sensor data, or performing continuous-time control.

Triggered process is executed asynchronously, whenever (a part of) its input knowledge changes, or
whenever a given condition on the component’s knowledge – the process’s guard – is satisfied.
The knowledge-access policy for a triggered process ensures that all three steps of the process –
reading the input knowledge, computing the outcome of the employed function, and writing the
output knowledge are (together) considered to be a single atomic step. This way, no interleaving
of other processes is allowed between the reading and writing steps. This is very important for

ASCENS 14



D1.5: Language Extensions for Implementation-Level Conformance Checking (Final)November 12, 2012

component Car1846a features Car, ... :
knowledge:

position: Position = ...;
checkpoints: list Position = { ... };
nextCheckpoint: Position = ...;
...
getPosition: fun(out position: Position) = { ... };
findNearest: fun(inout checkpoints: list Position, out nearest: Position) = { ... };
...

process positionMonitor:
function: getPosition
input: { }
output: { position }
scheduling: periodic( 100ms )

process navigate:
function: findNearest
input: { checkpoints }
output: { nextCheckpoint, checkpoints }
scheduling: triggered( position == nextCheckpoint )

...

Figure 6: Example of a DEECo DSL process specification

triggered processes, since the (potential) knowledge inconsistencies caused by interleaving may
be unrecoverable (e.g., in case the triggering condition is not satisfied anymore). Such triggered
processes are suitable to handle asynchronous events, such as service requests.

Precise semantics of process execution naturally depends on the way the atomicity is implemented,
which is still an open question. To this date, we use an implementation based on locking and an
implementation based on transactions.

In general, the DSL features syntactic constructs for capturing component processes; an example is
shown in Figure 6. Here, the periodic process positionMonitor employs the getPosition function to re-
peatedly check a sensor for the current position and stores it as the position knowledge value. Similarly,
the triggered process navigate employs the findNearest function to compute the nextCheckpoint from
the list of checkpoints, while trimming the list; the process is triggered then the car reaches the current
checkpoint (i.e., position equals nextCheckpoint). As for knowledge consistency, since navigate is a
triggered process, the consistency policy ensures that when written the values of nextCheckpoint and
checkpoints correspond to the outcome of findNearest applied on the original value of checkpoints
(i.e., checkpoints was not changed while findNearest was executing).

4.3 Component Composition and Interaction

Similar to SCEL, component composition in DEECo is flat, captured implicitly via a dynamic in-
volvement in an ensemble (Figure 7). An ensemble comprises a single coordinator component and
multiple member components; the set of components forming an ensemble is, for the purpose of spec-
ification, referred to also as a set of coordinator-member pairs sharing the same coordinator. However,
in contrast to SCEL, a DEECo ensemble is a first-class concept.

An involvement of a component in an ensemble in either of the roles coordinator/member is de-
termined dynamically by the runtime framework, according to the membership condition of the en-
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Figure 7: Composition of components into ensembles in DEECo

semble. A membership condition constitutes definition of the required interface (Section 4.2.2) of the
coordinator and of the member components (i.e., the knowledge that is necessary for a component in
order to take part in an ensemble, either as coordinator or member) and the membership predicate (i.e.,
the condition over these interfaces, under which the components featuring these interfaces represent
the coordinator-member pair of the ensemble).

The interaction among the components forming an ensemble takes the form of knowledge ex-
change. In contrast to SCEL, the interaction is implicit, i.e., a component does not proactively access
the knowledge of the other components. Instead, knowledge access and exchange is performed by the
runtime framework. The only allowed form of interaction among components is, similar to SCEL,
interaction between a member and the coordinator of an ensemble. This allows the coordinator to
apply various communication policies.

Here, an important idea is that the components do not perceive their membership in an ensemble.
They operate only upon their own local knowledge, which gets implicitly updated by the runtime
framework (via knowledge exchange) whenever the component is part of an ensemble.

In SCEL, a DEECo ensemble is to be represented by a component, designated to evaluating the
membership condition and performing the knowledge exchange.

4.3.1 Membership

A membership predicate declaratively expresses the condition under which two components represent
a pair coordinator-member of the associated ensemble. The predicate is defined upon the interfaces of
the components. The membership predicate is evaluated by the runtime framework when necessary.

In general, the same component can be at the same time the coordinator and a member of a single
ensemble. Also, a single component can be member/coordinator of multiple ensembles (Figure 7).
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interface TrafficAwareCar:
position: Position;
otherCars: list Position;
...

ensemble CarPositionExchange:
coordinator: TrafficAwareCar
member: TrafficAwareCar
membership:

distance(coordinator.position, member.position) ≤ THRESHOLD
knowledge exchange:

coordinator.otherCars← members.reduce(position)
scheduling: periodic( 100ms )

Figure 8: Example of a DEECo DSL ensemble specification

In the latter case, i.e., when a component satisfies the membership predicate of multiple ensembles,
we envision a mechanism to decide whether all or only a subset of the potential coordinator-member
pairs should be formed. Currently, we employ a simple mechanism of a partial order over ensembles
for this purpose (the “maximal” ensemble of the comparable ones is formed, the ensembles which
are incomparable are formed simultaneously). For example, providing a static priority in ensemble
definition yields such a partial order.

Figure 8 shows an example of a membership predicate, according to which two components having
the TrafficAwareCar interface form the coordinator-member pair if the member’s distance from the
coordinator is less or equal to a fixed THRESHOLD. Note, that the predicate is symmetric, meaning
that whenever two components A and B form a coordinator/member pair, then also B and A form a
coordinator/member pair. Thus, both A and B take the role of both the coordinator and member, each
in a different ensemble (identified by its coordinator).

4.3.2 Knowledge Exchange

The knowledge exchange embodies the interaction between the coordinator and all the members of
an ensemble. Being implicit, knowledge exchange is carried out by the runtime framework. Thus,
it is up to the runtime framework when/how often knowledge exchange is performed. Similarly to
component processes (Section 4.2.3), knowledge exchange can be carried out either periodically or
when triggered. In the former case, the knowledge consistency policy is similar to a periodic process.
However, in the latter case, the knowledge consistency policy is more complex than it is for a triggered
process, since the triggering condition refers to a coordinator-member pair of components. The whole
triggered knowledge exchange (i.e., exchange with all members) is, similarly to a triggered process,
executed as a single atomic step.

It is the task of the runtime framework to ensure that membership of the interacting components
holds when performing knowledge exchange. Technically, the knowledge mapping is represented by a
mapping function, which maps the knowledge of the coordinator to the knowledge of all the members
(i.e., the set of all members is passed as an argument), and vice versa.

Figure 8 shows an example of a mapping function, which periodically aggregates the position of
all members into the otherCars knowledge value of the coordinator.
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5 jDEECo – A Runtime Environment for DEECo Applications
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Figure 9: jDEECo architecture

In this section, we describe jDEECo – an implementation of the DEECo component model in
Java. jDEECo maps the abstract SCEL concepts, refined by DEECo, to implementation-level primi-
tives. In this section we thus deal with the component and ensemble definition in Java, their in-memory
representation, and the threading model. Technical details on jDEECo integration in ASCENS Ser-
vice Development Environment (SDE) are given in D6.2 [CHK+12]. Additionally, we focus on the
concepts relevant to implementation-level verification techniques, described in Section 5.4.

5.1 Component

A component definition has the form of a Java class. The initial knowledge of the component is cap-
tured by means of fields and static methods of this class, while the processes are captured by means of
specifically-annotated static methods of the class. The initial knowledge can contain both structured
(i.e., structured knowledge, map, and list) and primitive knowledge values (i.e., serializeable Java ob-
jects). All the DEECo-specific information is captured by means of dedicated class/method/argument
annotations.

In contrast to the conceptual description of a component (Section 4.2), the Java implementation
of a component does not comprise interfaces. Instead, the set of supported interfaces is implicit, i.e.,
all interfaces that structurally match the component’s knowledge are assumed to be supported by the
component (similar to duck typing in dynamic languages).

Figure 10 shows an example of a Java implementation of the Car1846a component from Sec-
tion 4.2.

5.2 Ensemble

Ensemble definition takes also the form of a Java class. Both the membership predicate and map-
ping function are captured by means of specifically-annotated static methods of this class. Similar to
processes, these methods are annotated with DEECo-specific information.
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@DEECoComponent
public class Car1846a extends ComponentKnowledge {

public Position position;
public List<Position> otherCars;
...

@DEECoInitialize
public static ComponentKnowledge getInitialKnowledge() {

/∗ return initialized instance Car1846a ∗/
}

@DEECoProcess
@DEECoPeriodicScheduling(100)
public static void positionMonitor(@DEECoOut(”position”) OutWrapper<Position> position) {

/∗ obtain the position from a sensor ∗/
}
...

}

Figure 10: Example of a DEECo component implementation in Java

In contrast to the conceptual description of ensemble (Section 4.3), Java implementation of an
ensemble does not comprise the definition of the member and coordinator interfaces. Instead, these
interfaces are defined implicitly as a union of the knowledge values serving as in/inout arguments
of the membership, and mapping functions. Technically, the member and coordinator arguments are
distinguished by identifier prefixes.

Figure 11 shows an example of a Java implementation of the ensemble from Section 4.3.

5.3 Runtime Framework

The jDEECo runtime framework implementation provides all the functionality necessary to schedule
component processes and perform knowledge exchange (Figure 9).

Concerning component knowledge (e.g., CK1 – knowledge of component C1 – in Figure 9), it is
stored in a knowledge repository, where it can be accessed by component processes and knowledge
exchange of ensembles (while obeying knowledge access policies). In general, this repository may be
distributed and thus shared among several jDEECo framework instances. As a part of the knowledge
handling mechanism of the knowledge repository, KnowLang Reasoner (D3.2, [VHM+12]) should be
used to implement operations over the derived and uncertain knowledge. For the purpose of verifica-
tion (Section 5.4), jDEECo employs a specialized implementation of the knowledge repository based
on a local hash map, implementing knowledge consistency policies via locking.

Concerning DEECo component processes (e.g., C1P1 – process P1 of component C1 – in Fig-
ure 9), they are being executed as regular Java threads. Nevertheless, their access to the knowledge
repository is managed according to the knowledge consistency policies. Specifically, threads execut-
ing triggered processes are blocked till their triggering condition holds true, while threads executing
periodic processes are between two subsequent runs blocked for the duration of their period.

Concerning knowledge exchange of ensembles (e.g., E1 in Figure 9), the scheduling of the asso-
ciated mapping functions is similar to component processes. However, the membership function is
evaluated before each run of the mapping function, so that the knowledge exchange is applied only to
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@DEECoEnsemble
@DEECoPeriodicScheduling(100)
public class CarPositionExchange {

public static final int THRESHOLD = 20;

@DEECoEnsembleMembership
public static boolean membership(

@DEECoIn(”member.position”) Position mPosition,
@DEECoIn(”coordinator.position”) Position cPosition) {

return distance(cPosition, mPosition) <= THRESHOLD;
}

@DEECoEnsembleMapper
public static void map(

@DEECoInOut(”members.position”) OutWrapper<Position[]> positions,
@DEECoInOut(”coordinator.otherCars”) OutWrapper<List<Position>> otherCars) {

otherCars.set(positions.get());
}

}

Figure 11: Example of a DEECo ensemble implementation in Java

valid coordinator-member pairs of components.

5.4 Techniques for Verification of Component and Ensemble Properties at Implemen-
tation Level

For verification of SCEL-based applications at the implementation level, we use Java PathFinder
(JPF) [JPF]. Specifically, we applied the JPF on jDEECo with the local knowledge repository. Cur-
rently, we support verification of the properties upon the knowledge, encoded via asserts and exception
mechanism. The spectrum of verified properties will be extended to support a wider range of proper-
ties in the future.

Since JPF is, in principle, a special virtual machine, it must reflect the language changes coming
with new versions. In addition, it comes with its own, limited, implementation of standard libraries.
For this reason, it may happen that not all language constructs are supported by the VM, and that pro-
grams behave differently on JPF than, for instance, on the Oracle Java VM. To be able to successfully
verify properties of an application, it is often necessary to modify the code to comply with the set of
supported language constructs and libraries. In this project year, we have studied what is supported
by JPF and modified the jDEECo implementation to be able to model-check it through JPF. More-
over, we have optimized the jDEECo implementation to make verification reasonably fast. This is a
necessary prerequisite for verification of larger systems built upon jDEECo.

6 On-going work on High-level Design of SCEL-based Applications

In this section, we describe the work in progress on a high-level design method to build SCEL-based
systems. The results of this work belong to the development methods (D8.3) planned for year 3,
nevertheless we have started some initial research and experiments in this field, which help assess that
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the implementation concepts proposed in the document are feasible and appropriate from the high-
level design. In particular, this has to be further iteratively updated with respect to progress on the
work on SOTA and GEM (targeting formalization of requirements). As further shown in the section,
we have performed such initial experiments on a small case study from the cloud environment. In the
same vein, we are currently working in cooperation with VW on a design experiment that employs the
e-mobility case study – initial results are reported in D7.2 [S+12].

The eventual goal is to provide a well-structured design technique for all the phases of the software
development process, from early requirements to an implementation based on concepts of components
and ensembles with the refined semantics as proposed by the DEECo component model, which also
supports mapping to general SCEL components and ensembles (D1.2, [PBN+12]).

Overall, the design method envisions employment of the methods for describing and formalizing
requirements (SOTA, GEM and Poem) as discussed in Section 6.5, and on methods to representing
knowledge and inferring derived and uncertain knowledge (KnowLang and KnowLang reasoner) as
discussed in Section 6.6.

6.1 Overview

System Level Ensemble Level Component Level

Decomposition step

Implementation

Figure 12: High-level system design overview.

Following the idea of the top-down design paradigm, the design process is based on systematic
decomposition and refinement of the system specification (Figure 12). It consists of: system level
design, ensemble level design, and component level design, followed directly by implementation.
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Figure 13: Span of the DEECo high-level system design throughout the design process.

The three levels cover all the phases of the software design process starting from the early re-
quirements phase, followed by late requirements and architecture design phases, ending up with the
detailed design phase (Figure 13). Although similarities to goal-based methodologies like Tropos
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[BGG+03] can be found, the DEECo design process focuses on an integrated view on the system’s
requirements and architecture.

In the rest of the section we describe the three levels of the design process. For each level, the
main concepts, together with their (graphical and/or textual) representation, and relevant examples are
presented.

6.2 System Level

As a starting point of the design process, similar to goal-oriented requirements engineering [vL01], it
is important to answer the questions ”which (global) goals must be achieved?” and ”which (system)
attributes must be maintained?”. The next question is ”who is responsible for achieving/maintaining
these attributes?”. In our method, these questions must be answered so as to obtain the system’s initial
stakeholders and interaction invariants:

stakeholder is a participant/actor of the system that arises from the early phases of requirements
analysis. In general, a stakeholder comprises knowledge, being essentially a set of knowledge
items. Formally, a stakeholder S is a tuple S〈N,K〉 where N is the stakeholder’s name and K
its knowledge.

invariant is a system property that does not vary over time. Specifically, an invariant is a predicate
over the knowledge of a set of stakeholders. The stakeholders are associated with the invariant
by taking a role in it. A stakeholder takes a role in an invariant when a subset of its knowledge
items is involved in the associated predicate.

More precisely, an invariant I is a tuple I〈N,F,R〉, where: (i) N is the name of the invariant,
(ii) F the predicate (formula), and (iii) R is a set of stakeholder roles referenced in F . Each
role R, i.e., an element of R, is a tuple of the form R〈NR, NS ,KS→I , A〉, where: (i) NR is
the role name, (ii) NS the name of the associated stakeholder S, (iii) KS→I the knowledge of
the stakeholder S that are involved in the associated invariant I , and (iv) A the cardinality of
the role which can take either of the values {1, ∗}. Thus, a single stakeholder can take multiple
roles (even providing/receiving the same set of knowledge items) in the same invariant. A role
with cardinality 1 refers to exactly one stakeholder, while a role with cardinality ∗ refers to an
unbounded set of stakeholders.

As an aside, the idea behind invariants is that in the system-to-be, there is a computation ac-
tivity responsible for ensuring the validity of the invariant by changing the relevant knowledge
of the stakeholders having a role in the invariant. Thus, it is possible to enrich a role definition
by specifying which knowledge in the role does the stakeholder provide to/require from the in-
variant (its associated computation activity in particular). In this case, a role is a tuple of the
form R〈NR, NS ,Kp:S→I ,Kr:S→I , A〉, where: (i) NR is the role name, (ii) NS the name of the
associated stakeholder S, (iii) Kp:S→I the knowledge the stakeholder S provides to the associ-
ated invariant I (its associated computation activity in particular), (iv) Kr:S→I the knowledge
the stakeholder S requires from the associated invariant I (its associated computation activity
in particular), and (v) A the cardinality of the role which can take either of the values {1, ∗}.

Although one may think of invariants as (global) goals, the two terms are not always interchange-
able. In fact, whereas goals are optative statements, typically referring to actions that will happen or
be completed in the future, invariants have a more predicative nature, typically refering to the present
state.
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6.2.1 Invariant Decomposition

The system-level design process starts by identifying all top-level invariants, together with the stake-
holders taking a role in them. Next, the process continues by decomposing the top-level invariants
into sets of (sub-)invariants. Currently, such decomposition is always an AND-decomposition (rather
than OR-decomposition). In order for the parent invariant to be satisfied, all of the decomposing
sub-invariants must be satisfied simultaneously.

The decomposition of invariants is an iterative procedure that terminates once each leaf invariant in
the decomposition tree is either of type single-stakeholder or inter-stakeholder. A single-stakeholder
invariant is an invariant that references a single role only, i.e., it can be satisfied by manipulating the
knowledge of a single stakeholder. On the other hand, an inter-stakeholder invariant is an invariant
that references more than one role and can be satisfied only by exchange of knowledge items defined
by the roles. Specifically, we consider only inter-stakeholder invariants that reference two roles, one
with cardinality 1 and one with cardinality * (this is to reflect the coordinator-members relation of
components in a DEECo ensemble, see Section 4.3).

Although inspired by the notion of goal decomposition in goal-oriented requirements acquisition
[DvLF93], the objective here is not to provide a set of functional and non-functional requirements
for the system-to-be. Rather, the decomposition steps should equally yield more insight regarding the
requirements to be met and the relevant architecture schemes. At the same time, as the invariants get
more specific, their definition should get more detailed (refined). At the end, the resulting invariants
(leafs of the decomposition tree) should entail a precise description of stakeholder roles, including the
knowledge provided/received by the associated stakeholders, as well as a specification of the invariant
in terms of either manipulating knowledge of a single stakeholder or knowledge exchange.

With such decomposition, we strive to get to the level of abstraction, at which the invariants can
be easily represented in the considered component communication semantics (for inter-stakeholder
invariants) and component computation semantics (for single-stakeholder invariants).

6.2.2 Representation

The graphical representation of invariants, invariant decomposition, stakeholders and stakeholder roles
is captured in a system-level graph (Figure 14). The direction of arrows in the takes-role relation
indicates whether the stakeholder provides (pointing towards the invariant) and/or receives (pointing
towards the stakeholder) knowledge to/from the invariant.

Further, a textual representation in the form of a DSL, providing additional information to the
graphical representation, is available (as illustrated in Figure 15). Specifically, the DSL adds a detailed
description of the roles (i.e., defines a full list of provided/received knowledge; e.g., lines 5, 23),
the invariant’s textual description (e.g., line 7), its formal specification (e.g., lines 28-29), and its
decomposition (e.g., line 9). The formal specification defines the semantics of the invariant in a
predicate logic notation.

There are also similar graphical and textual representations for the concepts on the other design
levels (i.e., ensemble and component level). We omit their description, since it is out of scope of this
document.

6.2.3 Cloud Load Balancing Example

In order to illustrate the above-defined concepts, we elaborate on a simple example scenario from the
Science Cloud Case Study [SRA+11]. In this scenario, several network nodes, forming an open-ended
cloud platform, run third-party services. Provided there exists an external mechanism to migrate a
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Figure 14: System-level design example.

service from one node to another, the goal is to keep the load evenly balanced among the participating
nodes.

Figure 14 shows a system-level diagram for the scenario. In this case, the invariant decompo-
sition was performed in three steps. In particular, defined in the first step, the top-level invariant
LoadBalanced is, in the second step, decomposed into two invariants MigrationDecisionsAvailable and
MigrationDecisionsFollowed, which themselves are subject to decomposition (the third step). As one
of the possible ways, the MigrationDecisionsAvailable is decomposed into ArbitratorBeliefOverLoad-
Maintained, NodesBeliefOverMigrationDecisionsMaintained and MigrationDecidedByArbitrator.

The decomposition in the second step reflects the design choice to separate the part responsible
for deciding migration from the migration process itself, in order to achieve separation of concerns.
Similarly, the decomposition of MigrationDecisionsAvailable in the third step reflects an approach to
deciding on migration where a (arbitrary, dynamically chosen) Node with the role of Arbitrator must
gather the information about every node’s load, take migration decisions, and broadcast them to other
Nodes. The main idea of this approach is to allow for centralized decision-making, while contributing
to robustness by selecting the decision maker dynamically.

Upon closer inspection, we can conclude that no further decomposition of these three invariants
is necessary, as the former two are inter-stakeholder, whereas the latter one is a single-stakeholder
invariant.

Figure 15 shows the DSL representation of some of these invariants, in particular those which are
in Figure 14 decomposed to the level of leaves. As the invariants get more specific and detailed in each
consecutive decomposition step, so does their textual and graphical representation. LoadBalanced def-
inition (lines 3-9), for example, does not contain a formal specification, neither states the knowledge
the stakeholders (here Nodes) have to provide or receive. In comparison, the definition of e.g. Arbitra-
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1 stakeholder Node
2

3 invariant LoadBalanced:
4 stakeholders:
5 ∗ Node as Nodes % <cardinality> <stakeholder> as <role name>
6 description:
7 ”The overall load of Nodes in the same local network is balanced”
8 decomposition:
9 MigrationDecisionsAvailable and MigrationDecisionsFollowed

10

11 invariant MigrationDecisionsAvailable:
12 stakeholders:
13 ∗ Node as Nodes providing {NetworkID, LoadRatio} receiving {MigrationDecisions}
14 description:
15 ”Nodes have correct and up−to−date migration decisions”
16 decomposition:
17 ArbitratorBeliefOverLoadMaintained
18 and MigrationDecidedByArbitrator
19 and NodesBeliefOverMigrationDecisionsMaintained
20 ...
21 invariant ArbitratorBeliefOverLoadMaintained:
22 stakeholders:
23 1 Node as Arbitrator providing {NetworkID} receiving {NodesToMigrateIn, NodesToMigrateOut},
24 ∗ Node as Nodes providing {NetworkID, LoadRatio}
25 description:
26 ”Arbitrator has a correct belief over nodes requiring/allowing migration in the same network.”
27 formal specification:
28 Arbitrator.NodesToMigrateIn = {n | n ∈ Nodes ∧ n.NetworkID = Arbitrator.NetworkID ∧ n.LoadRatio ≤

MIN LOAD}
29 Arbitrator.NodesToMigrateOut = {n | n ∈ Nodes ∧ n.NetworkID = Arbitrator.NetworkID ∧ n.LoadRatio ≥

MAX LOAD}
30

31 invariant MigrationDecidedByArbitrator:
32 stakeholders:
33 1 Node as Arbitrator providing {NodesToMigrateIn, NodesToMigrateOut} receiving {MigrationDecisions}
34 description:
35 ”Arbitrator decides the migration based on its belief over the other nodes’ load.”
36 formal specification:
37 Arbitrator.MigrationDecisions = decideMigration(Arbitrator.NodesToMigrateIn, Arbitrator.

NodesToMigrateOut)
38 ...

Figure 15: System-level entities definition example in DSL

torBeliefOverLoadMaintained (lines 21-29) contains both a formal specification and provided/received
knowledge description.

6.3 Ensemble Level

At the ensemble level, the goal is to refine

• the inter-stakeholder invariants identified at the end of system-level analysis by means of en-
sembles, and

• the roles of stakeholders by means of interfaces.
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Figure 16: Ensemble-level diagram example.

6.3.1 Interface Identification

An interface entails the knowledge items that a stakeholder needs to provide to/receive from the asso-
ciated inter-stakeholder invariant. Formally, an interface I is a tuple AI〈NI ,K〉, where NI is the name
of the interface andK the set of the entailed knowledge items. Thus an interface refines a stakeholder’s
role in an invariant by stating the relevant knowledge items.

In Figure 17 LoadedBeliefAggregator and LoadedNode interfaces refine the role of Node in Arbi-
tratorBeliefOverLoadMaintained (Figure 15, lines 23-24).

6.3.2 Inter-stakeholder Invariant Refinement

Each of the inter-stakeholder invariants identified at the system level is refined by an ensemble (mul-
tiple invariants can be refined by the same ensemble). As described in Section 4.3, an ensemble is a
group of components, where both the membership in the group and the communication in the group,
in the form of knowledge exchange, are expressed declaratively. Specifically, one component of the
group is the coordinator of the group, while the other components are members; knowledge exchange
is allowed only between the coordinator and a member of the ensemble. The coordinator and mem-
bers are identified via their interfaces. Formally, an ensemble E is a tuple E〈NE , IC , IM ,M,X〉,
where: (i) NE is the name of the ensemble, (ii) IC is the coordinator interface (iii) IM is the mem-
ber interface, (iv) M is the membership predicate, i.e., a function KIC ×KIM → {true, false}, and
(v) X the knowledge exchange definition, i.e., a functionKIM ×K∗IM → KIC×K

∗
IC , whereKI is the

set of relevant knowledge items of the interface I and * refers to an unbounded number of members
of the ensemble.

The membership and knowledge exchange of an ensemble (i.e., M and X) are to be inferred from
the invariant’s formal or textual specification. The member and coordinator interfaces are determined
from the cardinality of roles. Specifically, the role with cardinality 1 is refined into the coordinator
interface, while the one with cardinality * is refined into the member interface.

Figure 16 is an example of ensemble-level diagram. ArbitratorBeliefOverLoadMaintained invari-
ant (Figure 15) is refined into the UpdateLoadBelief ensemble. The particular ensemble definition in
Figure 17, which supplements the diagram, states that the ensemble is formed only when member and
coordinator have the same NetworkID (membership). In that case, NodesToMigrateIn and NodesToMi-
grateOut lists are populated (knowledge exchange) with member ids that are under- and over-loaded
respectively.
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1 interface LoadBeliefAggregator of Node:
2 NetworkID, NodesToMigrateIn, NodesToMigrateOut % elaborates Figure 15, line 23
3

4 interface LoadedNode of Node:
5 NetworkID, LoadRatio % elaborates Figure 15, line 24
6

7 ensemble UpdateLoadBelief refines ArbitratorBeliefOverLoadMaintained:
8 coordinator: LoadBeliefAgregator % determined by cardinality 1 in Figure 15, line 23
9 member: LoadedNode % determined by cardinality ∗ in Figure 15, line 24

10 membership: % elaborates Figure 15, lines 28−29
11 coordinator.NetworkID = member.NetworkID
12 knowledge exchange: % elaborates Figure 15, lines 28−29
13 coordinator.NodesToMigrateIn← members.filter(member.LoadRatio ≤ MIN LOAD)
14 coordinator.NodesToMigrateOut← members.filter(member.LoadRatio ≥ MAX LOAD)
15 scheduling: periodic( 100ms ) % elaborates Figure 15, lines 28−29

Figure 17: Ensemble-level DSL example: refinement of ArbitratorBeliefOverLoadMaintained

6.4 Component Level

At the component level, the goal is threefold: (i) to refine a stakeholder by means of a component
(component knowledge in particular), (ii) to refine the single-stakeholder invariants that the stake-
holder takes a role in by means of the component’s processes, and (iii) to reify the interfaces of the
stakeholder, defined during the ensemble-level design phase, by means of the component’s knowl-
edge. Naturally, there may be several ways to refine a stakeholder, thus selecting a particular variant
is a necessary design decision. According to Section 4.2, a component consists of knowledge and
processes (operating solely upon the knowledge). Formally, a component C is a tuple C〈NC ,K,P〉,
where: (i) NC is the name of the component, (ii) K the knowledge – a set of knowledge items (re-
call Section 6.2), and (iii) P the set of processes. A process P is formally a tuple P〈NP ,Ki,Ko, F 〉,
where: (i) NP is the name of the process, (ii)Ki the input knowledge of the process, (iii)Ko the output
knowledge of the process, and (iv) F the function of the process (i.e., a function Ki → Ko).
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Figure 18: Component-level design example.
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6.4.1 Stakeholder Refinement

In general, a stakeholder is refined by one or more components, while a single component can refine
several stakeholders. The main goal of such refinement is to aggregate all the knowledge items the
stakeholder provides to/receives from all the single-stakeholder invariants the stakeholder takes a role
in.

In Figure 18, the component NodeComponent refines the Node stakeholder taking a role into the
MigrationDecidedByArbitrator invariant (Figure 15). Thus, the component must include all the related
knowledge items (i.e., NodesToMigrateIn, NodesToMigrateOut, and MigrationDecisions) as shown in
Figure 19.

6.4.2 Single-stakeholder Invariant Refinement

Every single-stakeholder invariant is refined by a local computation activity – a process – of the com-
ponent refining the associated stakeholder. The input/output knowledge of the process is determined
by the knowledge items provided to/received from the invariant by the associated stakeholder. The
other aspects of the process, i.e., the function performing the computation and scheduling, are de-
signed manually, following the description/formal specification of the invariant.

In Figure 18, the process DecideMigration of NodeComponent refines the MigrationDecidedB-
yArbitrator invariant (Figure 15). Thus, its input constitutes the NodesToMigrateIn and NodesToMigra-
teOut knowledge items, while its output comprises the MigrationDecisions knowledge item, as shown
in Figure 19. The ComputeDecisions function employed by the process represents the procedure to
compute the migration decisions according to the formal specification given in Figure 15.

6.4.3 Interface Reification

A component refining a stakeholder must also reify all its associated interfaces (in that case we say
that the component features the interfaces). A reification of an interface implies including all the
knowledge items specified in the interface.

In Figure 18, the component NodeComponent reifies the LoadBeliefAggregator and LoadedNode
(and potentially other) interfaces (Figure 17), since the associated Node stakeholder takes a role in
the ArbitratorBeliefOverLoadMaintained invariant (Figure 15). Thus, the component must include the
NetworkID, LoadRatio, NodesToMigrateIn, and NodesToMigrateOut knowledge items, as shown in
Figure 19.

6.5 Formalization of Requirements

The design method utilizes predicates to capture requirements. It does not presume any particular
form of predicates – the predicates can be articulated informally as plain English sentences or in a
formal language (this can be combined at several levels of detail). In this context, SOTA and Poem
(D4.2, [ZAC+12]) are planned as the formal languages for concretizing the requirements, while GEM
provides an underlying logical framework for formalization of requirements and adaptation. Their
use would bring an additional benefit of automated reasoning on the requirements and the option of
analyzing component/ensemble fitness in different environments. Since SOTA features adaptation
patterns, this would potentially help guide the application designer in addressing typical adaptation
scenarios.
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1 component NodeComponent refines Node features LoadBeliefAggregator, LoadedNode, ... :
2 knowledge: % elaborates Figure 15, lines 23, 24, 33
3 NetworkID: IPAddress = ”10.10.1.x”,
4 LoadRatio: float = ... ,
5 NodesToMigrateIn: list NodeID = ... ,
6 NodesToMigrateOut: list NodeID = ... ,
7 MigrationDecisions: map NodeID→ NodeID = ... ,
8 ComputeDecisions: fun ... ,
9 ...

10 process DecideMigration refines MigrationDecidedByArbitrator:
11 input: { NodesToMigrateIn, NodesToMigrateOut } % elaborates Figure 15, line 33
12 output: { MigrationDecisions } % elaborates Figure 15, lines 33
13 function: ComputeDecisions % elaborates Figure 15, lines 37
14 scheduling: periodic( 100ms ) % elaborates Figure 15, lines 37
15 ...

Figure 19: Component-level entities example: refinement of MigrationDecidedByArbitrator

6.6 Knowledge Representation

The high-level design method extensively builds on knowledge specification, both in stakeholders and
invariants, as well as in the later phases during detailed design of ensembles and components. In par-
ticular, it assumes that the detailed description of knowledge and its semantics will be formalized using
KnowLang (D3.2, [VHM+12]) and that it will provide the formal framework and tools for support-
ing systematic elaboration of stakeholder knowledge representation. Further, building on the features
of the KnowLang Reasoner, we plan to enrich the stakeholder knowledge and invariant specification
by means of derived and uncertain knowledge. As for modeling self-adaptive behavior, we envision
to integrate the KnowLang behavioral concepts (i.e., situation and policy) by building on top of the
more general concept of component process. Such integration would help filling the abstraction gap
between the conceptual design on the system level and the detailed design on the component level.

6.7 Experiments with the Design Method in the E-mobility Case Study

In cooperation with VW, the high-level design method is currently subject to an extensive experimental
work focused on the e-mobility case study, where a method for identifying ensembles is inherently
needed. Initial results are reported in D7.2 [S+12]. Based on these preliminary results, we plan
to create a second iteration, where we intend to elaborate in detail on all the identified ensembles
and components along with their knowledge. In this respect, the use of SOTA for formalizing the
requirements during the gradual requirements refinement is a promising option. In the same vein, we
plan experimenting with KnowLang for identifying factual knowledge and managing the uncertain
and derived knowledge. Further, we envision to investigate and quantify the impact of communication
and computation delays on the overall conformance of the application to the initial requirements.

7 On-going Work on Interpreting Performance as Knowledge

As a follow-up to the implementation-level language extensions (jRESP and DEECo), in this section
we present initial results in interpreting the observed performance as a part of the component knowl-
edge. The benefit of such interpretation is two-fold. Firstly, having the observed performance available
in the form of component knowledge allows for conformance checking of performance-related prop-
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erties of component and ensemble implementation. Furthermore, the autonomic behavior of compo-
nents and ensembles may depend on the observed performance of both the components and ensembles
themselves, and other parts of the system. It may also be useful for the ensemble membership to be
based on performance indicators.

From the “surrounding environment” point of view, performance knowledge is just another tuple
where the value represents processing time, load factor or another performance indicator. From the
component point of view, however, performance knowledge is different from other knowledge tuples.
First, accessing the performance knowledge may involve an inherent cost that is not necessarily present
with other knowledge types: the actual performance must be measured and the measured data must be
processed. This cost is typically paid by the observed rather than the querying component, because it
is that component that must be measured or measure itself. In multiple senses (robustness, precision,
timeliness), the cost of measurement also stands as a tradeoff against accuracy.

Also important is the observation that performance knowledge obtained through measurement is
necessarily inaccurate. In part, this property resembles that of other knowledge, such as the infor-
mation from hardware sensors. Additionally, however, the measurement code can directly affect the
application, resulting for example in the system reaching different optimization decisions.

To mitigate some of the problems related to interpreting performance as knowledge, we introduce
the Stochastic Performance Logic, which allows for working with component and ensemble perfor-
mance data while abstracting away from some of the performance data properties listed above.

7.1 Stochastic Performance Logic

Stochastic Performance Logic (SPL) is a many-sorted first-order logic with relational operators be-
tween performance indicators [BBK+12]. These operators allow one to express relative comparisons
of performance, such as testing whether component A is faster than component B.

SPL operates on random variables representing performance of a component. The relational op-
erators accept such random variables as their input, and produce an output indicating whether the
relation is true based on the performance data provided. In mathematical terms, this amounts to test-
ing hypotheses over the properties of the random variables, and SPL relies on statistical procedures to
evaluate the operators.

With further extensions to SPL and with integration of SPL with multiple data sources, as in-
troduced in [BBH+12], the complex issues of accuracy and its relationship to the measurement cost
become more manageable. First, transparent to the developer, reasoning about performance takes the
robust form of statistical testing, and the probabilities of certain types of errors due to random noise
can be managed. Next, we separate the evaluation of SPL formulas from the data collection process,
introducing the possibility of extrapolating from past measurements with negligible increase of SPL
formula complexity. The extrapolation not only makes it possible to manage the overhead of an on-
demand measurement, but can also predict future trends, thus helping the ensembles to adapt ahead of
time.

7.2 Runtime Framework for Collecting Performance Knowledge

At the tool level, the the mechanisms to apply SPL in the ensemble prototypes are implemented by
the SPL framework, currently under development. The SPL framework consists of two main parts,
one that derives knowledge from the measured performance data, and one that takes care of actually
measuring the performance. Both parts need to be integrated with the ensemble runtime environments.
Thus, the current prototype focuses on Java, but otherwise remains at a platform neutral level.

During the course of the project, the framework has already been tested with an OSGi component
framework as a preparation step for integration into the Scientific Cloud Platform, itself under develop-
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ment. The test within an OSGi framework is important because the OSGi class-loading mechanism,
which needs to interact with the instrumentation code for measurement, is different from standard
class loading procedures. The difference is that standard class loading is based on a tree hierarchy
of class loaders, while OSGi components use a set of independent class loaders to allow a complete
isolation of individual components. The test shows that it is possible to add SPL framework even to
such non-standard environment, and that the integration is possible without introducing extra burden
to the user of the framework.

7.3 Techniques for Obtaining Performance Information

There are multiple options how to obtain the performance information in the context of components
and ensembles. Traditionally, the developer of an ensemble component can manually write the code
that publishes the information. This approach is useful in that it allows one to handle special cases
in a flexible way, where the mapping between the ensemble behavior and the observable events is
complex. On the other hand, this solution burdens the developer and is static in nature. It is therefore
necessary to complement it with an automated and dynamic performance measurement support.

To provide the performance measurement support, we rely on the connection to the implementa-
tion level mapping. We observe that many of the events whose performance properties are of interest
are directly mapped to well defined code locations, such as method invocation. When it makes sense
to insert the measurement code at such code locations, it is possible to automate this process.

In the DEECo framework all events are mapped to method invocation. For example, implemen-
tation of the process is actually a method annotated with @DEECoProcess. Similarly, other events
(e.g. knowledge transfer) are mapped to Java methods. This allows us to provide the automation
mentioned above.

To fully separate implementation of the components or ensembles from the measuring framework,
the instrumentation – insertion of the measurement code – shall work at bytecode level to eliminate
needs for changing existing source code. Java offers support for bytecode instrumentation, typically
by deploying a Java agent that transforms (e.g. instruments) the bytecode. But the instrumentation in
Java can happen only at class loading time – typically when an application is starting. Recent Java
Virtual Machines (JVM) make it possible to force class reloading: therefore the instrumentation can
happen at virtually any time during execution. This allows one to add or remove the measurement
code at will during ensemble or component execution, providing dynamic performance measurement
support.

Java itself only provides a very basic API to modify bytecode. For efficient progress, we have
employed the DiSL instrumentation framework [MZA+12] that offers an elegant way to instrument
bytecode. The DiSL framework can insert the instrumentation code to various code locations, ranging
from basic blocks (such as loop starts) to method bodies. The framework was designed for static
instrumentation, whereby the instrumentation happens during application start and the application
remains instrumented until terminated.

In our scenario, we are using DiSL in a very different setting. The novelty is in using it in a
very dynamic environment: first, the component or ensemble instrumentation can happen at any time
during its execution. Next, it shall be possible to remove the instrumentation. The DiSL framework
itself does not offer the mentioned functionality, but extending it is under development. With these
new features, DiSL would be used as the instrumentation framework that allows for both dynamic and
automatic support to obtain the performance measurement.
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8 Conclusion and Outlook

In this document, we described two SCEL implementations – jRESP and DEECo (realized in Java by
jDEECo) – as the foundation for implementation-level conformance checking. They both allow for the
use of SCEL paradigms in Java, but differ in their focus. While jRESP aims at rapid prototyping and
experiments with SCEL, DEECo/jDEECo targets large-scale system development with well-defined
architecture. This is further supported by the presented design method that allows distilling a DEECo-
flavoured architecture of components and ensembles from system requirements.

With respect to the on-going work, in accordance with the project plan, the focus will be on ver-
ification of functional properties of systems implemented in jDEECo. This is to be realized via an
extension of JPF as already outlined in this report. Additionally, we plan to refine the memory and
threading model of the the jDEECo framework, and further extend JPF to fully exploit the specific
features of jDEECo-based systems, which have the promising potential to make verification more effi-
cient. With respect to performance as knowledge, we plan to provide techniques for SPL-conformance
checking at runtime.
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