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Executive Summary

The development of ensembles poses many challenges for the developer beyond those encountered for
more traditional software systems. To identify them, the ASCENS case studies provided descriptions
of scenarios that highlight important difficulties when developing systems in their respective applica-
tion area. This deliverable summarizes and generalizes some of the challenges that were identified in
these scenarios.

We focus on the following areas: The behavior of ensembles, in particular adaptation, awareness
and emergence; models of ensembles and their semantics; robust and scalable formal methods; the
role of knowledge and its use; and finally the development process and development tools. Where
applicable we give pointers to more detailed descriptions in other deliverables.
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1 Introduction

Designing and implementing large programs, even for a single computer, is an extremely difficult
task. Distributed systems compound these problems with their own issues, such as deadlocks, race
conditions, or the lack of uniform global time. On top of that, ensembles present additional challenges
to the developer, for example massive numbers of nodes, unpredictable behavior of individual nodes,
and open environments. It is therefore clear, that current approaches to software engineering—which
can barely cope with traditional software systems—are not sufficient for developing ensembles.

The goal of work package 8 is to eventually come up with patterns, best practices and other
software-engineering methods to develop, validate and deploy ensembles. As a first step toward this
goal we have analyzed challenges posed by ensembles for the engineer, and some of the most promis-
ing approaches to address or overcome them. Given that all the complexities of traditional software
and systems engineering also apply to ensemble engineering it is clear that a text of manageable size
cannot be an encyclopedic treatment of all such challenges. Instead we focus on those issues which
we consider to be the most important obstacles preventing us from building dependable and adaptable
ensembles cheaply and reliably.

1.1 Essential and Accidental Difficulties

In two influential articles [FPB87, FPB95] F. P. Brooks points out that the difficulty in the develop-
ment of software has both essential and accidental factors. To paraphrase, essential difficulties are
those inherent in understanding and addressing the problem the software system is meant to solve,
while accidental difficulties are those arising from the tools and methods used in the production of the
software. In [FPB87] Brooks identifies four main reasons for essential difficulties in the development
of software: the complexity of the problems that software addresses, the requirement of conformity to
complex external interfaces and business processes, the changeability of software which leads to con-
tinuous demands for additional functionality, and the invisibility of software artifacts which prevents
us from using physical or spatial intuitions. There have been many arguments about the details of
Brooks’s theses, and the field of software engineering has made significant progress in the time since
the papers were written; but the essence of both papers is still relevant today.

Many of the problems facing the designers of an ensemble are essential; there is little hope of rem-
edying them by proposing solutions for accidental difficulties. For example, increasing the autonomy
of the individual components in a system also increases the number of ways in which the compo-
nents interact and therefore the possibility for undesirable interactions; this is an difficulty that cannot
be eliminated in models of the ensemble without removing essential characteristics of its behavior.
Most ensembles have high essential complexity, which makes them difficult to understand, describe,
implement and test.

We agree with Brooks that it is unlikely that there will be any single method for drastically re-
ducing the effort necessary to deal with the essential complexities, but that a combination of different
techniques can ameliorate the problems posed by essential complexities. Many of the challenges pre-
sented in this deliverable address specific aspects of the question how essential complexities can be
made more tractable.

On the other hand, while it is possible to argue that in the field of traditional software engineering
the accidental difficulties have been reduced to such a degree that they can be considered mostly
insignificant, this is not the case for ensembles. For example, the question how to concisely describe
the goals of a service component and their relation to the goals of the whole ensemble is still a largely
unsolved, and at least partly accidental problem.
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1.2 Droves versus Societal Ensembles

The nodes of ensembles can exhibit many different levels of sophistication—individual service com-
ponents can range from simple sensors that have a very limited, fixed behavior to humans (possibly
operating complex machines) who may or may not possess intimate knowledge about the workings of
the whole system and whose goals may only partially agree with the overall goals of the ensemble.
There is no standard terminology to distinguish these kinds of system; in the following we will use the
terms drove for an ensemble that consists only of simple nodes (so-called reactive service components
in the terminology of SOTA described in deliverable D7.1) and society or societal ensemble for an en-
semble containing nodes which are self-aware, adaptive and able to exhibit complex, situation-specific
behaviors (goal-based service components).

In many cases the nature of the ensemble determines the kinds of nodes that exist in the ensemble:
micro-robots in a robot swarm are limited to simple behaviors by their sensors and computing power,
therefore a swarm of such micro-robots will be a drove, whereas an ensemble consisting of human
drivers operating electric vehicles will necessarily be societal. When the kind of service components
to use is not predetermined by external factors, there is often no agreement which level of complex-
ity these components should exhibit: For example, R. Brooks [Bro91b, Bro91a] argues strongly for
building robots without symbolic representation or abstract reasoning and instead relying on emergent
behaviors of simple reactive agents; or in the terminology introduced above and applied to ensembles,
for droves instead of societal ensembles. On the other side of the argument, for example, R. Re-
iter [Rei01], and H. Levesque and G. Lakemeyer [LL07] argue for cognitive robotics based on sym-
bolic representation. In practice, most ensembles will be somewhere between these extreme positions,
with simple reactive nodes as well as knowledge-based, self-aware nodes operating together. Finding
the right structure of the ensemble is one of the largest challenges for designers of ensembles.

In the three ASCENS case studies, swarm robotics is necessarily more oriented towards droves
(because of hardware limits of the robots) whereas e-mobility is clearly an example for a societal
ensemble. In the case of the science-cloud the situation is not overly constrained by the nature of the
ensemble and both kinds of solution appear possible.

Many of the challenges described in this deliverable are relevant for all kinds of ensembles but
some, e.g., in Sect. 3.3 or Sect. 5, are only applicable to societal ensembles.

1.3 Relationship to Other Work Packages and Progress

Since WP8 is integrative in nature and relies on the results of other work packages, most of the tasks
have been scheduled in the Description of Work to start only in months 13 and 19. The main focus
in the first reporting period was therefore on task T8.1 (Challenges of Developing SCEs in the Real
World). To this end, we created, in cooperation with WP7, scenario descriptions for each of the
case studies; initial versions of these scenarios were made available to all project partners in the first
three months of the project, and subsequently refined and clarified. The scenarios present challenges
that are typical for the domain of the case study in a way that is easy to understand for the other
project partners, and they were widely used in the project to enable and focus collaborative research
between project partners. This deliverable summarizes the challenges presented in the scenarios in a
more systematic form that focuses on those challenges that are common to ensembles in general. The
work of WP8 is related to all other technical work packages; pointers to more detailed discussions of
individual challenges in other work packages are given throughout this deliverable. The work in WP8
proceeded as planned and all goals were reached in time.
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1.4 Structure of this Deliverable

The structure of this deliverable is as follows: In the next two sections we look at behaviors and models
for ensembles, respectively. We then focus on scalable formal methods and the possibilities for using
knowledge in ensembles. We then proceed to the development processes and tools for ensembles.

2 Behavior of SCs and SCEs

One of the advantages that, for example, an ensemble of swarm robots promises to have over larger,
more powerful, monolithic robots is that the ensemble can be more resilient to partial failure and
can more easily adapt to new situations. This flexibility, however, comes at the price of possibly
unexpected emergent behaviors that are difficult to recognize and control. In this section we will
discuss challenges posed by adaptation, self-awareness and emergence.

2.1 Adaptation, Awareness, Self-Awareness

We call adaptation the capability of a system to operate in a number of different environments, or to
change its behavior according to new requirements. More formally, we assume that we have a system
model describing the ensemble (Sys), the environment in which it is operating (Env), the goal or desired
result of the computation (Res), and the connection between the ensemble and the environment (Link)
which may represent, e.g., a network or sensors. These models can be expressed at various levels of
abstraction, depending on the details of the situation. For example, Sys might be a non-executable
specification of the ensemble, or it might be the executable program running on the individual nodes.
We assume that we have a semantic consequence relation |= that describes the relationship between
the models and the goal. For more details about this system model for ensembles, see [HW11], a more
operational approach based on this system model is SOTA as described in deliverable D7.1.

Then we can describe the correctness of the program in its environment as follows:

Sys,Env,Link |= Res. (1)

A weaker1, but often useful, formulation is to ensure that the correct result is not incompatible with
the program in a given environment, although the correct result need not be implied (i.e., Sys, Env,
Link and Res are consistent):

Sys,Env,Link,Res 6|= ⊥. (2)

This latter version allows, e.g., reasoning in many cases where some of the data in the models is
still unknown. Note that these formalizations are similar to those used in model-based problem solv-
ing [Str07].

Given these definitions we say a system Sys can adapt to a range of environments E (given link
Link and goal Res) if for every Env ∈ E we have Sys,Env,Link |= Res. More generally, we call a
set A of triples (Env,Link,Res) an adaptation domain and say that Sys can adapt to A if for every
(Env,Link,Res) ∈ A we have Sys,Env,Link |= Res.

In order to define awareness of a part R of the environment Env, we assume that the model of the
system Sys has a component Z that describes (part of) the internal state of Sys, that R is equipped
with a distance function d and that we have a map B mapping the domain of Z into the domain of R.
Then d(BZ,R) can be seen as a measure of the awareness that Sys has of R: if the distance is 0, Sys
has a perfect internal representation of R (when interpreting Z using B); increasing distance means
diminishing awareness.

1We assume that Sys,Env, Link 6|= ⊥
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Self-awareness can be defined in the same way as awareness by simply substituting the ensemble
Sys for R. To be useful for practical applications the definitions given in this section have to be
extended to take, e.g., probabilistic behaviors into account. However, the simple form of the definitions
given above is sufficient for the discussion in the following sections.

2.2 Adaptation Mechanisms

The system model described in the previous section allows us to provide a high-level description of
adaptation mechanisms and the consequences that different choices entail. A more detailed discussion
of adaptation mechanisms and patterns is given in deliverable D7.1.

The simplest adaptation mechanism is to have a fixed, small number of programs, P1, . . . Pn run-
ning on each node of the ensemble, and a program Po on each node that selects between P1 and Pn

according to predefined criteria, such as sensor input or commands from other nodes. This results
in an ensemble of purely reactive service components and essentially corresponds to a subsumption
architecture [Bro91a, Bro91b] or the Strategy pattern [GHJV95].

The other extreme would be to have explicit representations of environment, system, link and
goals on each node and to use declarative reasoning to arrive at the desired behavior. This is, e.g., the
approach taken in cognitive robotics [LL07].

An interesting intermediate approach is to have a set of partial models (or programs) Mn
i , i ∈ I

on each node n such that a valid model (or program) for a given situation can be obtained as

Mn
Jn =

⊕
j∈Jn

Mn
j

where the subset Jn ⊆ I of applicable model elements for node n is determined by the local knowl-
edge of the node,⊕ is a suitable combination operator, and a program Pn

Jn can be generated from Mn
Jn

at run time if Mn
Jn is not itself executable. This approach can provide more flexibility than a purely

reactive program while using fewer resources for inference than a purely declarative solution. If the
Mn

Jn are programs, this process roughly corresponds to context-oriented programming [CH05, CH07].
All previously described approaches assume that we have a fixed set of models or building blocks

for models. Another possibility is to have certain “adaptation operators” that can modify a class of
models. These operators might range from well-understood operations, such as linearly interpolat-
ing between values computed by numerical models, to operations with unpredictable consequences,
such as random permutations of model fragments, i.e., evolutionary algorithms operating on models.
Various experiments in using evolutionary approaches to design circuits with interesting character-
istic [TLZ99] and facilities for self-repair [GT04] have been reported and the results imply that in
cases where we have millions of parallel nodes, which are difficult to exploit for controlled design, the
parallel evolution of several alternative solutions might deliver better results than normal design tech-
niques. A. Thompson notes in [Tho02] that this kind evolutionary design is the only feasible approach
in situations where neither the forward nor inverse model are tractable; a situation which might appear
frequently in ensembles. The papers [Koz95, KKY+00] by J. R. Koza present an optimistic opinion
about the feasibility of this approach. In our estimation it is not clear whether the obtained results
are representative. Since it is unlikely that the complete software for an ensemble will be derived by
evolutionary techniques, it is an interesting challenge to see how such techniques could be integrated
into a development process that relies to a large degree on manually developed components.

Apart from the obvious question how to specify and implement, e.g., the model fragments and
combination operators, the previous discussion hints at several interesting challenges which are inde-
pendent of the way in which the various behaviors on individual nodes are generated: changes between
Mn

Jn and Mn
Kn have to happen when, e.g., node n detects a change of the environment from Env to
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Env′ so that it can no longer satisfy its goal Resn using Mn
Jn . In general it is not easy to determine

that the environment has changed, or, if a change has occurred, what the new environment is, since
the nodes do not possess global knowledge of the current system state. Once a change in the envi-
ronment has been identified, another challenge is to determine whether adaptation is necessary, i.e.,
whether Mn

Jn ,Env′,Link |= Resn still holds for the individual node n and its goal Resn. Even if this
is the case, it is then necessary to check whether

⊕
nM

n
Jn ,Env′,Link |= Res still holds for the overall

ensemble, and if not which nodes should adapt. For efficiency reasons it will normally not be possible
to prove this formula using automated theorem proving, and more efficient ways to test the validity of
this formula have to be investigated for various modeling and programming paradigms. One possible
approach that can limit the amount of resources needed for reasoning about the system while still al-
lowing the validation of system correctness is the negotiate-commit-execute scheme described in more
detail in deliverable D2.1.

Reasoning about, or dynamically changing, the model, is only useful if the results are reflected in
the behavior of the system, in other words, there has to be a causal connection between the internal
model and the program. This is addressed in more detail in Sect. 3.1.

2.3 Fault Tolerance and Security

In the previous section we assumed that the ensemble is exactly described by the model Sys. In
practice, however, because of the large number of nodes that is characteristic of ensembles, some SCs
in the ensemble will be inoperational at any point in time. Similarly, networks or sensors are not 100%
reliable, and the environment is open and constantly changing. Therefore, ensembles have to be fault
tolerant, and also tolerant to deviations in the environment and the links to the environment. This can
formally be expressed by stating that instead of ensuring Sys,Env,Link |= Res we have to ensure that
Sys′,Env′,Link′ |= Res for all Sys′, Env′ and Link′ close to Sys, Env and Link, respectively.

On the other hand, many patterns for engineering fault-tolerant systems [Han07] are simplified by
the structure of SCEs, since, e.g., SCs form natural Units of Mitigation, the large number of nodes
in most SCEs aids in adding Redundancy and the hierarchical structure provides structured means for
Escalation of recovery measures.

Similar concerns apply to the issue of security as well. Since ensembles generally operate in open
environments it is often possible for adversaries to induce Byzantine attacks [LSP82] against the en-
semble; this complex failure mode is often not considered in traditional systems engineering [Han07].
For further challenges about security engineering for ensembles we refer to [And08]

2.4 Limiting Emergence

The term emergence has been used to describe various phenomena: in the software engineering litera-
ture it is often used to describe global phenomena, not arising from any single component [Som07]; in
the literature about complex system it is often used with more specific denotations, for example Mark
A. Bedau defines weak emergence as [Bed97]: “Macrostate P of [a system] S with microdynamic D
is weakly emergent iff P can be derived from D and S’s external conditions but only by simulation.”
In this section we are mostly concerned with this latter denotation of emergence.

An important consideration for adaptive systems, in particular when using evolutionary techniques
but also in more controlled approaches, is how to verify that the resulting design still satisfies the
specification? It is, after all, not difficult to design scenarios where interaction between different
components lead to undesirable weakly emergent behavior.

When working with logical models it might, in some cases, be possible to prove that the result of an
adaptation is correct, but in general this will be too resource intensive and unpredictable. Furthermore,
this approach presupposes that the composition of well-defined local behaviors does not result in a
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system that exhibits undesirable behaviors on a global level. This is not generally true as, e.g., the
game of Life [Wai74] shows, where even very simple local interactions can lead to unpredictable
global behavior [Bee04, GC98]. It is therefore unlikely that it will be possible to ensure that all
emergent properties are known at system design time; one of the big challenges for a discipline of
ensemble engineering will be to find ways that limit emergent phenomena to stay within a certain
range of acceptable system behaviors.

The investigation of architectural patterns and invariants might prove fruitful, e.g., by combining
redundancy of the evolved components with a (provably correct) controller that disables the outputs of
components not fulfilling their specification. This raises a number of interesting questions regarding
the adaptivity of the controller, e.g., how does the controller determine whether its specification still
fulfills the requirements in the current environment?

2.5 Engineering Emergence: From Global to Local Behavior and Back

In the previous section we addressed the issue of limiting emergence, but often the converse problem
is just as relevant: how do we engineer emergence?

When developing software for ensembles is that the goal is often specified for the whole ensemble,
but actions can only be performed by individual nodes, based on incomplete and possibly faulty local
knowledge, and with limited capacity to influence their environment. What actions should the nodes
take to best achieve the system goal? How do we coordinate tasks and goals between the nodes and
the ensemble? What happens when the designers change the goal of the ensemble; how is this change
communicated to the nodes and what is the appropriate reaction of the nodes? Similarly, how can
nodes decide what action to take in order to achieve the overall system goal when they have only
incomplete and possibly unreliable information?

These are all important questions for the designer of an ensemble, in particular for droves, but
currently no universally applicable method to address them is known. In swarm robotics, models of
behaviors occurring in nature, e.g., the flocking behavior of a school of fish or the foraging behavior of
ants, have been investigated, and methods for performing task allocation between different members
of a robot swarm have been developed. But as yet there is no general way to reliably combine different
behavior in order to achieve more complex tasks (e.g., foraging while keeping the robots organized in
a swarm), and no systematic method is known for determining the necessary behaviors of individual
robots when the desired behavior of the robot swarm is given.

3 Models of SCs and SCEs

One of the most successful strategies to address complexity is to look at the problem from a higher
level of abstraction. This trend has been visible throughout the history of computing, where we have
moved from assembly language to modern high-level programming and modeling languages. Cur-
rently, object-oriented techniques and languages are prevalent in the development of new software
systems; UML models [BRJ05] are routinely used, and have mostly replaced other informal modeling
notations in mainstream software development. While these techniques have been successful for tra-
ditional software development, the characteristics of ensembles present several challenges which are
not adequately addressed by current modeling approaches:

• The role of models as they are currently used is not adequate.

• The formalisms used to model systems often do not have a well-defined semantics.

• Models are mostly “shallow”.
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3.1 The Role of Models

As mentioned before, one of the main techniques to enable more and more complex systems to be built
is to increase the level of abstraction at which we describe and reason about the system. In software-
engineering on essential way to achieve this is the use of high-level models instead of low-level code.
It therefore seems likely that the development of ensembles will rely on increasingly high-level models
of the system.

In current software development practice models are mainly design-time artifacts: most of the time
models are only informally related to the actual system since the implementation is done manually;
even in model-driven approaches the model is used to generate the system but the executable code has
no “back links” to the model from which it was generated, and therefore no access to its model during
runtime. This makes it difficult for a component to dynamically check whether it still performs as
foreseen by its designers and prevents it from using the information contained in its models to make
choices about desired adaptations and trade-offs.

This may be less of a concern for droves, since the assumption there is that individual agents
can operate without knowledge about the system. In ensembles that are oriented more toward the
societal organization, nodes should be able to exhibit more sophisticated, situation-specific behaviors.
For these kinds of systems, the decisions that have to be taken by individual components to deal
with unforeseen situations may be so complex that the simplest way to represent them is for the
component to have various models—of its environment, of its own possible behaviors and their effect
on the ensemble as a whole, and of its goals and requirements—available at run-time. This would
allow the ensemble to reason about the trade-offs implied by various possible responses and choose
a course of action that maximizes the expected long-term benefit. Even more powerful possibilities
would arise if the different nodes in the systems had a shared notion of key concepts so that nodes
could communicate the current situation to peers, and each node could choose an appropriate strategy
according to its capabilities and the system’s goals.

One of the main challenges in this area is therefore the connection of models to the executing
code. To achieve this, code, models, and goals have to be closely integrated: the program has to be
able to determine, while it is executing, which models are relevant to the executing code; on the other
hand, if new requirements cause a model to be changed, the code implementing this model has to
be modified on the fly to satisfy the updated specifications. Irrespective of automated adaptation of
programs taking place, this kind of traceability [GF96, THA07] between requirements, models, and
code, offers great advantages for the development and debugging of systems.

3.2 Semantics of Models

If models are to be more closely integrated into the actual system, they have to have a well-defined
semantics that can unambiguously be understood by both designers, customers and automated tools.
Unfortunately this is not the case for UML: the semantics of UML is often complex or non-intuitive,
and sometimes inconsistent. The UML specification contains many extension points which deliber-
ately leave certain aspects of the language underspecified. An example of a semantic problem in the
definition of UML 2.0 is given in [AS06], where the authors argue that the definition of associations
has semantic implications which are not represented in the syntax and may easily be misunderstood.
The article [CK04] by S. Cook and S. Kent contains a more detailed discussion of problems with the
current UML specification, in particular for the generation of executable code from UML models and
the definition of domain-specific extensions for UML.

An important challenge is therefore to develop languages that combine simple, well-specified
semantics with high expressivity and good usability for developers. Those languages which are used
to communicate with stakeholders should also be understandable for domain experts and customers.
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When a suitable language is already widely used in a certain domain, mapping it into the modeling
language should be semantically straightforward and achievable by automated tools. This is related
to research in areas such as model-driven architecture [MKUW04], where domain models are used
to generate executable code and have therefore to be equipped with a precise semantics. In ASCENS
this challenge is addressed by the SCEL language described in deliverable D1.1, and also by the
foundational models developed as part of WP2 and described in D2.2. Currently the focus is on
developing precise and expressive semantic models, later work in WP8 will be concerned with building
modeling languages on top of these foundations that are easier to use for developers of ensemble.

3.3 Surface and Deep Models

The distinction between “surface systems” and “deep systems” was defined in an article by Peter E.
Hart [Har82] as follows:

By surface systems I mean those having no underlying representation of such fun-
damental concepts as causality, intent, or basic physical principles; deep systems, by
contrast, attempt to represent concepts at this level.

While the distinction between deep systems (also called “causal models” [Dav82]) and surface sys-
tems (which have also been called “shallow models,” [Str07] “empirical associations,” [Dav82] or
“compiled-knowledge systems” [CM82] in the literature) is neither objective nor unambiguous, it
nevertheless expresses an important difference. Most models that are currently used in software engi-
neering can be classified as surface models, since they express the information required for the soft-
ware to function but not the reasons why the system behaves the way it does, or what consequences
the actions of the system have.

For example, a model of a university management system typically includes associations between
the student and university or course, but it does not contain enough information to conclude that being
exmatriculated may have serious consequences for a student, or that posting exam questions on the
web may not be advisable before the exam takes place (but might be permissible after the exam is
over).

This is not problematic when the models are used by developers as an aid in the development
process, or when they are used for code generation purposes, and therefore the greater simplicity and
lower cost to build surface models is justified. However, it is not clear which level of adaptivity can
be achieved with “shallow” systems, and whether there is a class of behaviors that requires “deep”
systems.

The main challenges in this area are finding cost-effective ways to build deep models that are
suitable for software engineers without advanced degrees in mathematics or logic. How this can be
achieved in practice is still largely a question for future research. There may be interesting conflu-
ences with research on rationale management [DMMP06] which tries to capture the design rationales
of software developers. The issue of deep models is deeply entwined with the topic of knowledge
representation which we address in Sect. 5.

4 Robust and Scalable Formal Methods

A semantically well-defined modeling language enables the use of formal methods, such as model
checking or theorem proving, during design time and at run time. While formal methods are not yet
widely used in industrial software development, considerable progress has been made in developing
efficient, automated tools that can be used by developers to increase the quality of software.
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More powerful hardware, improvements in implementation technology and theoretical discoveries
have led to tools that can solve increasingly large verification and validation problems automatically.
As an example, J. Rushby argues in [Rus06] that SMT (satisfiability modulo theories) solvers can
automatically decide certain verification problems that previously required manually guided general
theorem proving.

Increasing automation of formal validation and verification methods allows novel ways to use
them. For example, formal validation techniques might be used during the negotiation pase of a
negotiate-commit-execute cycle to check that the solution that the SCs dynamically agreed upon can
actually satisfy the security or privacy requirements of the ensemble.

However, one of the main problems for using formal methods in that kind of scenario is that their
performance is often unpredictable: often only the most expert users can accurately estimate whether
a certain model or a certain set of parameters can be checked given the available resources, and minor
changes to a verification problem can dramatically increase the run-time or memory requirements of
validation tools.

If formal methods are to play an important part in the run-time environment of ensembles they will
have to be more robust, i.e., the run-time has to be able to reliably determine which tools are applicable
in a given situation, e.g., by being able to estimate the expected execution time and the quality of the
expected results for various tools.

Another related issue that impacts the use of formal methods in the development of ensembles
is the well-known problem of state-explosion: often formal methods are only applicable to small
problems because the state space for larger problem instances becomes intractably large. This leads to
two complementary challenges: (1) developing methods or tools that can better deal with large state
spaces, so that the formal model can directly operate on a model of the ensemble, and (2) finding ways
to describe the relevant properties of the ensemble with a significantly reduced state space, e.g., by
using stochastic approximations of behaviors.

Detailed information about formal methods and their application to ensembles can be found in
deliverable D5.1.

5 The Role of Knowledge

Models for ensembles, in particular deep models, are closely connected to the questions of knowledge
representation and the use of knowledge. Here some of the challenges facing the designer of an en-
semble are: How should knowledge be represented? What knowledge is needed? How can we capture
the domain-specific knowledge, if possible in a reusable manner? How can we use this knowledge?

This section introduces some of the challenges; a detailed discussion of the state of the art and
the KnowLang language developed as part of the ASCENS project to address issues of knowledge
representation is given in deliverable D3.1.

5.1 Knowledge Representation

One of the main challenges in developing knowledge-intensive systems is finding the right formalism
for representing the knowledge. On the one hand, restricted representations such as description log-
ics [BCM+07] allow efficient reasoning about the knowledge base, on the other hand they do so by
significantly curtailing the expressive power of the language. Therefore most large-scale knowledge
representation projects, e.g., Cyc [Cop97] or SUMO [NP01, SUM] use a very expressive language,
often first-order logic with second-order extensions, e.g., for reasoning about collections. But even
these systems are often not particularly well-suited for representing complex probabilistic dependen-
cies which arise frequently when modeling real-world problems. Therefore, following the influential
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books [Pea89, Pea00] by Judea Pearl, Bayesian and causal approaches to knowledge representation
have become more popular. However these approaches are mostly restricted to propositional repre-
sentations; it is not clear that extensions to first-order theories such as Markov logic [DL09] are a
generally appropriate solution, and they have not yet gained wide acceptance.

What kinds of knowledge-representation formalisms and reasoning mechanisms are appropriate
for ensembles, whether multiple knowledge-representation mechanisms can simultaneously be em-
ployed and how knowledge bases specified in different formalisms might be integrated are all impor-
tant questions about knowledge representation for ensembles that are currently active research areas.
In ASCENS these questions are addressed in WP3, and in particular the KnowLang language; more
details can be found in deliverable D3.1.

5.2 Necessary Knowledge

The open-ended nature of the environment in which an ensemble operates poses a difficult question
for the designer: what kind of knowledge is required by the service components so that they can
fulfill the goals set by the designer for the ensemble? The answer to this question may vary widely,
depending on the range of possible environments, the complexity of the tasks that the ensemble should
fulfill, and the solution chosen by the designer. On the one hand of the spectrum are droves, as they
are e.g., currently used in swarm robotics: droves use algorithms that achieve the desired result in a
large number of environments without any explicit knowledge about the environment or the tasks that
should be achieved. On the other end of the spectrum are systems such as Watson [Wat], the computer
that successfully competed in the game show “Jeopardy!” and possesses a huge knowledge base of
common-sense knowledge.

A large knowledge base and an expressive knowledge representation formalism may enable a
system to operate in more varied environments and to find strategies for achieving better outcomes;
however the size of the knowledge base and the expressivity of the representation language also greatly
influences the complexity of the reasoning task; it may be that the resources of a system are insufficient
to reach any decision in a timely manner if its knowledge base is too large and complex.

Current approaches to software and systems engineering don’t take explicit knowledge into ac-
count; knowledge-engineering is generally not overly concerned with the trade-offs faced by software
developers. Integrating results from these areas and providing guidance about the required knowledge
would be an important step in the direction of developing knowledge-rich ensembles.

Another challenge concerns the reuse of knowledge bases and their extension with domain-specific
knowledge: Developing a comprehensive knowledge base is prohibitively expensive and time-consuming
and therefore not possible for most projects. On the other hand, it is not clear whether reusable
“general-purpose” knowledge bases can be developed and successfully employed in the development
process. The free availability of ontologies such as SUMO [NP01] and OpenCyc [Ope] may be an
important first step in this direction.

5.3 Using Knowledge

When a knowledge base of the ensemble’s domain is available it may be used at design time or at run
time, and in various manners: The knowledge may only be used by (passive) constraints that detect
violations of specific properties, it may be used for reasoning whether certain (immediate) goals may
be achieved or how they may be achieved, and it may be used for planning and determining long-term
strategies.

The use of domain knowledge at design time has been explored in generative and product-line-
based software development [GS04, CE00], however the focus of these approaches is mainly on gen-
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erating families of software systems for related problems. Whether these techniques can be modified
to achieve adaptation to different environments is still an open question.

Most forms of reasoning are computationally expensive, therefore it is in general not possible to
employ reasoning for every task that a SC has to fulfill. Methods for combining knowledge-based
reasoning with more efficient and less resource-intensive ways of performing certain tasks have there-
fore been investigated for a long time, e.g., in the form of agent architectures such as Touring Ma-
chines [Fer92] or 3T [BFG+97]. But architectural solutions do not easily address some challenges for
using knowledge at run time, such as: (1) finding ways to use the limited computing power available
on the SC for those reasoning tasks that result in tangible benefits, (2) increasing the efficiency and
predictability of the reasoning mechanisms, and (3) distributing reasoning across the ensemble while
still relying on local knowledge and communication only.

6 Development Process and Tools

To cope with the complexities of ensemble engineering, developers should be supported both by en-
gineering methods and by tools. Furthermore, the increased level of domain modeling necessary for
developing societal ensembles poses new challenges for domain-specific development. Parts of this
sections are based on [HRW08].

6.1 Patterns

Since the publication of [GHJV95], design patterns and pattern languages have become an important
tool for software developers. Patterns are well-understood solutions to common design problems that
show the trade-offs for employing a particular solution and provide a vocabulary for talking about the
possible designs.

Many of the problems facing ensemble developers are addressed by existing patterns, e.g., net-
worked and distributed computing [SSRB00, BHS07], but no such pattern catalogs exist for other
domains, e.g., adaptation or systems with massive scale. One of the goals of WP8 is the development
of a system of patterns for those areas.

Patterns are informal tools for software designers; the resulting software usually contains no ex-
plicit information which patterns were used and which trade-offs influenced the choice of the particular
patterns. This limits the applicability of patterns for ensemble development, in particular for the de-
velopment of societal ensembles. SCs with deep models (see Sec. 3.3) might exploit this knowledge
to dynamically select different solutions to design problems, based on their current knowledge of the
environment and goals. Since this selection process is similar to the one that the designer has to go
through when developing the software it might be useful for the SC to have knowledge of the patterns
that were used to develop the software. How to define formalized patterns that can be used to reason
at run time while remaining the generality and flexibility that was one of the reasons for the success
of patterns is another challenge that will be investigated by WP8 in the coming reporting periods.

6.2 Improved Tools and Languages

Tools are important to suppress or simplify many of the accidental difficulties in the software devel-
opment process. For large projects they are also instrumental in navigating models and source code. It
is likely that the development of improved tools for programming languages such as Java has played
an important role in their industry-wide adoption.

To be useful, improvements in languages have to be accompanied by support for the new features
in development environments. For example, being able to combine individual viewpoints into a single
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program can reduce the effort to develop software. However, just defining the necessary language
constructs is, in itself, not helpful. It is also necessary to provide corresponding tools that can display
individual viewpoints, as well as the result of combining several or all viewpoints of a system, etc.,
and to integrate the new language constructs into the navigation mechanisms of the development
environment, the debugger, etc.

One challenge for tool support is important is understanding and modifying systems after they
have adapted: If the system model changes because the system adapts autonomously to different
environmental conditions or requirements, the developer has to be able to understand the reasons for
the adaptation and the consequences of the change. Furthermore, individual SCs will, in general, adapt
in different ways. When updates to these systems are deployed, they should respect these adaptations
(and maybe pass the most successful adaptation to other SCs in similar situations).

Another challenge is the seamless integration of formal methods and formalized patterns into
development tools. For example, the tool could extract information contained in the patterns chosen
for the system, run tools such as model checkers to find potentially unintended situations,e.g., patterns
with incompatible preconditions being used together, and inform the developer about these problems.

6.3 Domain-Specific Development

The domain of a software system plays a prominent role in almost all development approaches, e.g., in
the form of requirements analysis and system models [Som07]. Some recent development approaches
place particular emphasis on the importance of a detailed understanding of the domain [Eva04] or
problem contexts [Jac01], but this is mostly done in an informal context.

Several development approaches try to use domain knowledge in a more formal manner. For
example, software product lines [PBvdL05], software factories [GS04], and the step-wise refinement
approach of AHEAD [RKW04, BSR04] are approaches based on generative programming [CE00]
which propose to develop families of related programs. This is achieved by modeling the domain
and possible features of programs and by building generators that can create programs with certain
combinations of features and non-functional properties from configuration specifications. As already
discussed in Sect. 5.3 it is an interesting challenge to see whether these approaches can be generalized
to the development of ensembles.

Similarly, domain-specific languages (DSLs) are sometimes claimed to facilitate the development
of certain software systems by providing a simple language for specifying the problem. Traditionally,
DSLs are categorized into two kinds: internal DSLs where the DSL is embedded in a general-purpose
programming language, and external DSLs where the DSL is a stand-alone implementation [Fow].
Experience shows that while DSLs often have significant advantages there are also some problems: the
behavior of DSLs is often specified by reference to the behavior of an implementation, and in particular
external DSLs lead to a proliferation of languages that a developer has to understand. Nevertheless,
often the benefits of using DSLs outweigh drawbacks. Techniques for precisely specifying DSLs, for
easily deriving an implementation from the specification, and for integrating DSLs into development
environment and tools for formal methods remain relevant and challenging research topics, although
progress has been made with the availability of tools such as Xtext [Xte].

Returning to Section 3.3, an interesting research topic is the development of theories for various
application domains that can be used as deep models, or as background knowledge for deep models.
These theories could be equipped with (interfaces to) reasoning components for particular aspects of
the domain. For example, a theory for university management might define notions such as “univer-
sity,” “student,” “lecture,” and their relationships. Associated tools might include a constraint solver
for creating timetables and room assignments, or a planner for proposing courses that a student should
attend.
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7 Summary and Next Steps

This section summarizes the challenges identified during the first reporting period and gives an overview
of the work planned in the second year of the ASCENS project.

7.1 Summary

At the beginning of the project, development challenges were identified by elaborating scenarios for
the ASCENS case studies. The scenarios were widely used to enable collaborations between partners
in the project, and many of the challenges are addressed by ongoing or planned research in ASCENS.
In this deliverable we have summarized the challenges in a problem-oriented format and focused on
those problems that arise in all three case studies. The main areas in which common challenges were
identified are the behavior of SCs and SCEs, models of SCs and SCEs, robust and scalable formal
methods, the role of knowledge and the development process.

7.2 Next Steps

With the experience from the case studies the main work of WP8 will begin in the second reporting
period, as planned in the Description of Work. The main tasks will be:

• The development of a pattern catalog for ensembles in which patterns for addressing some of the
challenges presented in this deliverable will be developed. Our goal is to describe the patterns
in a more formal way than most common pattern languages so that the patterns can be made
available to development tools or even to SCs at run time.

• The establishment of a repository for SCs. In this task we will try to identify commonly useful
software components which are used in the case studies, and make them more easily accessible
for developers.
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