
www.ascens-ist.eu

ASCENS
Autonomic Service-Component Ensembles

D7.1: First Report on WP7
Requirement Specification and Scenario Description
of the ASCENS Case Studies

Grant agreement number: 257414
Funding Scheme: FET Proactive
Project Type: Integrated Project
Latest version of Annex I: 7.6.2010

Lead contractor for deliverable: Fraunhofer
Author(s): Nikola Šerbedžija (Fraunhofer), Stephan Reiter (LMU),
Maximilian Ahrens (Zimory), José Velasco (Zimory), Carlo Pin-
ciroli (ULB), Nicklas Hoch (VW), Bernd Werther (VW)

Due date of deliverable: September 30, 2011
Actual submission date: November 15, 2011
Revision: Final
Classification: PU

Project coordinator: Martin Wirsing (LMU)
Tel: +49 89 2180 9154
Fax: +49 89 2180 9175
E-mail: wirsing@lmu.de

Partners: LMU, UNIPI, UDF, Fraunhofer, UJF-Verimag, UNIMORE,
ULB, EPFL, VW, Zimory, UL, IMT, Mobsya, CUNI

D7.1: First Report on WP7 (Final) November 15, 2011

Executive Summary

Case study work package embraces swarm robotics, cloud computing and e-mobility application do-
mains. Three fairly different domains with their complex requirements bring all ASCENS project
practical challenges and provide a test bed for ASCENS project results evaluation. The work pack-
age also serves as a major place for project integration offering a complex multidimensional problem
space that motivates ASCENS multidisciplinary approach calling formal method, language and tool
developers to build up their part of awareness-rich technology. The iterative process of ideas and ex-
periences exchange with other work packages ensures that the scientific and high level concepts are
jointly developed and are relevant for the practice.

The work in the first project year has been characterized by both individual and collective efforts.
Each partner that introduces its problem domain in project has been working in defining its own re-
quirements and system needs. At certain points, a group consideration has been organized to compare
the requirements and extract common and generic features that may represent a core of the problem.
These problems were than discussed with other partners in order to exchange experience and establish
a common project vocabulary and common view to the problems and possible solutions.

According to the description of work (DoW) the following tasks have been accomplished: T7.1.1,
T7.2.1 and T7.3.1 - requirements analysis and specification of the three case studies (tasks ended in
November 2011). The activities in the tasks: T7.1.2, T7.2.2 and T7.3.2 - Model Synthesis, for each
application domain started in April 2011 and are still active. The work in the first project year has
been accomplished as planned and is reported in this document.

ASCENS 2

D7.1: First Report on WP7 (Final) November 15, 2011

Contents

1 Introduction 5

2 Ensemble of Self-Aware Robots 8
2.1 Introduction . 8
2.2 Domain . 8
2.3 Requirements Analysis . 8

2.3.1 Exploration . 9
2.3.2 Task allocation . 9
2.3.3 Collective transport . 10
2.3.4 Beyond Foraging . 10

2.4 Approach and Design . 10
2.5 Simulated Experiments . 11
2.6 Work on Real Robots . 11

2.6.1 Current Magnetic Gripper Prototype . 12
2.7 Outlook . 12

3 Resource Ensembles as Science Clouds 14
3.1 Introduction . 14
3.2 Domain . 15
3.3 Requirements Analysis . 17
3.4 Approach and Design . 22

3.4.1 High-Level Overview . 23
3.4.2 Distributed Storage . 24
3.4.3 Distributed Application Execution . 25

3.5 Outlook . 25

4 Ensembles of Cooperative E-Vehicles 28
4.1 Motivation . 28

4.1.1 Problem Statement . 28
4.2 Domain/Case Study Short Description . 29
4.3 Requirements Analyses . 29

4.3.1 Formulation and Formalization of an e-Mobility Process Model 29
4.3.2 Summary of Requirements . 31

4.4 Approach and Design . 32
4.4.1 Concept Service Centric Car . 32
4.4.2 Level of Mobility Planning . 33
4.4.3 Service Components in a User-Vehicle-Infrastructure Network 33
4.4.4 Composition of Service Component Ensembles 34

4.5 Future Work . 35

5 Conclusion 36

ASCENS 3

D7.1: First Report on WP7 (Final) November 15, 2011

ASCENS 4

D7.1: First Report on WP7 (Final) November 15, 2011

1 Introduction

The ASCENS project aims at bringing awareness into technical systems. Formalisms, linguistic con-
structs and programming tools should be developed featuring high level of autonomous and adaptive
behavior. Rigorous and sound concepts will be used to reason and prove system properties. These
results are going to be developed in a close cooperation with the partners that requires such solutions
for their practical problems.

The case study work package should justify the results of the project by transferring project results
into concrete and pragmatic means for deployment in the following practical case studies:

• Swarm robotics as a multi-robot system that through interaction among participating robots and
their environment can accomplish a common goal, which would be impossible to achieve by a
single robot.

• Cloud computing as an approach that delivers computing (resources) to users in a service-based
manner, over the internet.

• E-mobility as a vision of future transportation by means of electric vehicles network allowing
people to fulfill their individual mobility needs in an environmental friendly manner.

The above mentioned practical problems have many common features. Collective and autonomous
behavior of numerous entities that act as self aware and self expressive system elements that through
mutual interaction and through interaction with their environment fulfills both individual and global
goals. Thus the three case studies are respectively seen as:

Task 1. Ensemble of self-aware robots with a goal to optimize both individual and collective behavior
so that the swarm as a whole will acquire the capacity to reason, plan and autonomously act.

Task 2. Ensembles of resources as science clouds with a goal to optimize the use of processing and
storage resources in a unified effort to improve utilization and obtain a higher throughput in the
science cloud computing setting.

Task 3. Ensembles of cooperative e-vehicles with a goal to optimize the usage of traffic and infras-
tructure resources while taking into account the typical e-mobility restrictions (range limitation,
battery re-charge, individual transportation goals, parking availabilities, etc)

Common view to the application domain allows for a creation of a common approach to formulate
and model practical problems and further leads to a generic solution that may be applied to develop
and deploy solutions in practice.

The work in work package seven is consequently divided in three tasks (dedicated to each separate
case study), with the same structure and organization:

SubTask *.1. Requirements analysis and specification

SubTask *.2. Model synthesis

SubTask *.3. Integration and simulation

SubTask *.4. Implementation and evaluation/validation

(where * stands for 1,2 and 3). In the first project year the focus of the work has been on requirements
analyses and specification tasks.

ASCENS 5

D7.1: First Report on WP7 (Final) November 15, 2011

Common feature Swarm Robots Cloud computing E-Mobility
Ensemble of entities Robots Computing resources E-vehicles , users, in-

frastructure
Global goal Coordinated collec-

tive behavior
Resource availability Travel, journey, mo-

bility planning
Self-awareness Knowledge about own

state and goal
Awareness of avail-
able resources and
computational re-
quirements

Awareness of own
state and restrictions

Autonomous and col-
lective behavior

Meeting all goals Decentralised deci-
sion making, global
optimization

Reaching all destina-
tion in time

Optimization Time, energy, perfor-
mance

Availability, computa-
tional task execution

Destination achieve-
ment in time, ve-
hicle/infrastructure
usage

Adaptation According to environ-
mental changes, other
entities, goals, etc

According to avail-
able resources

According to traffic,
individual goals, in-
frastructure, resource
availability

Robustness Hardware failures,
sensory noise, limited
sensory range and
battery life

Failing resources Range limitation,
charging battery in-
frastructure resources

Table 1: Common features of the ASCENS case studies

The major work within this reporting period was in separate requirements specification of the case
studies. That provides a ground for further common considerations yielding a set of common features
that characterizes all case studies (given in the table 1).

This set of common features serve as a basis for further work in the subtasks Modeling and synthe-
ses, for each of the case studies. At the same time it forms a generic framework for further joint work
with other work packages. The initial concepts for service components language primitives for coor-
dination, resource negotiation, and task descriptions developed within WP1 will be evaluated upon the
case studies and their ensembles properties. Fundamental models for autonomous service component
ensembles as defined within WP2 will be re-worked and refined by the deployment in the case studies.
Knowledge modeling and representation for self-awareness as presented within WP3 will be further
considered in a practical WP7 context. The adaptation patterns of WP4 have been already inspired
by the real life examples from this work package and will be further polished through the joint work.
Most means for adaptation as defined in work package 4 should be used in the ASCENS case stud-
ies. Already announced common approach to verification among work packages 4 and 5 will further
contribute in formal reasoning and verification of the important application properties within the AS-
CENS case studies, harmonizing the WP5 and WP7. Collaboration with WP6 has special importance
as it is planned to directly use the integrated ASCENS tools (to be established within WP6) in final
case studies development. The best practice experience, both in the ASCENS application domains as
well as in complex distributed systems in general, as presented in the WP8, serves as guidelines and
inspiration for the work in this work package. Last but not least the integrative significance of the case

ASCENS 6

D7.1: First Report on WP7 (Final) November 15, 2011

studies work package requires and justifies a tight collaboration with all ASCENS work packages.
This report is structured according to the task structure and chronology of the work. Section

2, 3 and 4 describe the swarm robotics, science cloud and e-mobility case studies, respectively. Each
section is dedicated to the corresponding subtask T*.1 - requirements analysis and specification within
the case study in question. The sections have similar structure: (1) motivation or introduction offers
a short description of the case study; (2) domain specification offers more detailed description of
the application area in question; (3) requirements analyses details the needs and specific properties
of the pragmatic examples; (4) ASCENS approach details the projects specific way how to solve
the practical problems and (5) ongoing and further work summarize the achievements and point out
further activities. Each section ends with an overview of the on-going subtasks T*.2 model syntheses
considering possible system modeling means and properties for formalization and proof of concept.
The section 5 concludes this report and indicates future plans for the coming period.

ASCENS 7

D7.1: First Report on WP7 (Final) November 15, 2011

2 Ensemble of Self-Aware Robots

2.1 Introduction

Large multi-robot systems (robot ensembles or robot swarms) have the potential of displaying desir-
able properties, such as robustness to individual failures through redundancy, and enhanced perfor-
mance through parallelism and cooperation. Realizing such potential is challenging because of the
lack of sound design methodologies. The aim of the robotics case study is to apply the methods devel-
oped by the partners of the ASCENS project to validate them and obtain novel, more robust behaviors
for robot ensembles.

The work of the first year was focused on requirement analysis and specification. As it will be
explained in the following, we identified a generic application scenario that will allow us to apply and
compare the approaches proposed during the rest of the project.

2.2 Domain

In the literature, coordination among multiple robots has been achieved in several ways. Existing
approaches span from complete centralization to complete decentralization, with hybrid centralized-
decentralized systems in the middle. With complete centralization, a master system must collect the
data from the robots, analyze it and send to the robots the actions to perform. In many applications,
the advantages of this approach do not counterbalance its drawbacks. Although centralized control
is usually simpler to design and can result in a globally optimized behavior, it suffers from poor
robustness (the master system is a single point of failure), poor scalability (the master system’s CPU
and network connectivity are shared resources) and require global sensing and communication (which
is not always available).

In contrast, completely distributed coordination strategies do not exploit any kind of master sys-
tem, global knowledge or planning. Instead, coordination is the result of the parallel pairwise interac-
tions of the system’s components. Completely distributed coordination strategies achieve scalability
through local sensing and communication, and achieve robustness and high performance leveraging
the natural parallelism and redundancy of the system. However, it is very hard to design effective
strategies of this kind, mainly due to the lack of a methodology. Existing approaches to completely
distributed coordination strategies often take inspiration from natural systems that display some form
of swarm intelligence, such as insect colonies of ants, bees and termites.

2.3 Requirements Analysis

The aim of the robotics case study is to apply the concepts developed by all the partners in the AS-
CENS project and validate them against state-of-the-art robot control problem. Among the many
possible testbed scenarios, foraging is one of the most studied.

In nature, foraging refers to the activity animals conduct to find, collect and harvest food. For
the robotics case study, foraging is an interesting problem because of its richness: solutions for this
scenario must include strategies for exploration, task allocation, and collective transport. Furthermore,
it is easy to apply metrics to compare different strategies: energy consumption, quantity of food
harvested, time, etc.

For the purposes of the robotics case study, we formalized this scenario in a matrix of aspects with
“tunable” complexity (see Table 2). Changing the complexity of such aspects will (i) enable us to
isolate the relevant factors to study the role of self-awareness in robot behaviors (for instance, which
kind of information a robot should store and process, and how), as well as (ii) stress the applicability of
the available modeling techniques, providing feedback for the development of new ones. In particular,

ASCENS 8

D7.1: First Report on WP7 (Final) November 15, 2011

Exploration Environment Small/Large
Exploration Environment Obstacle-free/Cluttered
Exploration Terrain Flat/Rough
Exploration Map Available/Constructible/Not available
Task allocation Task-robot mapping STSR/STMR
Task allocation Task dependency Independent/Sequential/Complex
Task allocation Task assignment Instantaneous/Time-extended
Task allocation Task dynamics Simple/complex
Task allocation Task distribution Simple/complex
Transport Object weight Light/Heavy
Transport Object grippability Easy/Hard

Table 2: Complexity matrix for the robotics case study scenario.

it will be interesting to be able to formalize behaviors and scenarios in such a way to verify desired
system properties. In the following, we will present and discuss the complexity matrix.

2.3.1 Exploration

To collect food, the robots must first find it. Exploration serves this purpose. Exploration complexity
depends on a number of factors related to the environment. Depending on the number of robots, a
small environment is easier to navigate than a large one. Similarly, an obstacle-free environment is
easier than a cluttered one. Typically, in a small, obstacle-free environment the best exploration strat-
egy is diffusion through random walk. In a large, maze-like environment, more complex strategies are
necessary. Similarly, navigation is simpler on a flat terrain than on a rough one. Another important
aspect is whether the robots can exploit a map of the environment or not. The easiest situation is when
a map is available beforehand. In this case, the robots can use this information to locate themselves
and the interesting points in the environment, making navigation easier. Alternatively, a map could
be constructed during the experiment through SLAM (simultaneous localization and mapping) tech-
niques. The third and most challenging option is that the robots do not possess nor construct a map,
but navigate in a cooperative way.

2.3.2 Task allocation

Task allocation is the activity of assigning robots to specific tasks. In foraging, tasks can be manifold.
For instance, some robots could be explorers, other transporters. Transport, in turn, could require
cooperation by many robots. In general, we can distinguish between single- and multi-robot tasks,
and between single- and multi-task robots. Single-robot tasks can be executed by a robot individually,
while multi-robot tasks require cooperation of a group of robots. Single-task robots can execute only
one task at a time, while multi-task robots can execute more than one in parallel. In our complexity
matrix, we consider only the following two cases: single-task-single-robot (STSR), and single-task-
multi-robot (STMR). An example of a task that can be declined in these variants is transport. STSR
transport is when an object is light enough for a robot to move it. If the object requires many robots to
move it, transport is STMR. Furthermore, in a realistic scenario, tasks may possess activation dynam-
ics, i.e., each task must be executed in certain time periods. We can model this by defining a function
Ti(t) such that its value over time t is 1 when task i ∈ [1,K] is active, and 0 otherwise. In general,
Ti(t) takes the form of a square wave function, i.e., a task undergoes periods of activation and periods
of de-activation. Task activation periods can be correlated to each other, for instance when some tasks
are dependent on other tasks (e.g., task i must be executed before task j). Furthermore, assignment

ASCENS 9

D7.1: First Report on WP7 (Final) November 15, 2011

of tasks to robots can be time-extended or instantaneous. In time-extended assignment, Ti(t) (or an
approximation of it) is assumed known and tasks are assigned to robots according to a pre-calculated
schedule. Instantaneous assignment refers to methods in which Ti(t) is not known. Another important
aspect in task allocation is the distribution of tasks in the environment. Task distribution has conse-
quences on the efficiency of task discovery and execution by the robots. Task distribution is linked
to the organization of the environment, i.e., how cluttered or structured the environment is. When
dealing with robot swarms, in general a task must be executed by a certain number of robots, called
quota. In practical problems, quotas are rarely precise. For example, moving a heavy object requires
a minimum number of robots to compensate for the object weight. Employing more robots usually
results in better performance (i.e., the object is transported faster or with less effort by the robots’
motors). However, above a certain number of robots, coordination becomes an issue that negatively
impacts performance. Therefore, typically quotas can be expressed as ranges [min,max].

2.3.3 Collective transport

Collective transport can be made complex by a number of factors. Some factors are linked to the
environment, and have already been discussed for exploration. Transporting an object in a cluttered
environment with rough terrain is arguably more difficult than in an obstacle-free environment with flat
terrain. Besides the environment, the transported object is an important factor. Light objects, movable
by single robots, are easier to transport than large, bulky objects requiring cooperation among multiple
robots. Furthermore, gripping an object can be made simple, by designing accordingly the robot
gripper and the object, or difficult, requiring non-trivial maneuvers of the robot gripper to approach
and grasp the object.

2.3.4 Beyond Foraging

Besides being an interesting test-bed problem in itself, foraging can be considered part of larger, chal-
lenging real-world application scenarios. A particularly interesting application scenario is collective
construction. In collective construction, multiple robots cooperate to build a complex structure. For-
aging is an integral part of this scenario because the robots need to first locate a suitable building spot,
and subsequently to transport material on site. Collective construction can be seen as the third phase
of this process, whereby the transported material is manipulated to build a structure.

2.4 Approach and Design

The traditional approach to the design and development of swarm robotics behaviors involves both
physics-based simulations and real-world experiments.

Physics-based simulated experiments serve multiple purposes. Firstly, since robots are often very
expensive, developing in simulation allows designers to detect and solve potentially destructive prob-
lems in a safe environment—software. Furthermore, working in simulation allows a designer to ab-
stract away those implementation details that, especially in the first phases of the process, do not
directly impact the system under study and, instead, slow down its design—such as battery lifetime,
hardware failures and sensor noise. Working in simulation also enables experiments that would be
impossible in the real world, either because it would be too risky to perform them or because they
would be too expensive. This is especially true in multi-robot system research, because testing for
scalability is often impractical due to the cost of the robots. A last and important reason why simula-
tion is fundamental is that it provides the possibility to gather statistical evidence over a large number
of experimental runs.

ASCENS 10

D7.1: First Report on WP7 (Final) November 15, 2011

(a) (b)

Figure 1: Preliminary simulated scenarios: (a) collective transport, (b) foraging.

Real-world experiments usually have the purpose of validating the results found in simulation.
For the purposes of ASCENS, an interesting aspect of real-world experimentation is that ideas derived
from abstract and theoretical approaches will find an application to practical problems.

2.5 Simulated Experiments

In the course of the project, simulated experiments will be performed using the physics-based simula-
tor ARGoS.

In the course of the first year, we started experimentation based on two simplified scenarios. The
first is a collective transport scenario, whereby three robots must move an object that is too heavy
for any single robot, while avoiding obstacles. The second is a foraging scenario, in which 10 robots
initially deployed in a nest explore the environment to find and collect objects to be returned to the
nest. Both robot behaviors are part of the larger scenario described above and have been used by
several partners as common ground to kick-start collaborations, discussions, and obtain preliminary
results.

Forthcoming work will be devoted to more complex scenarios. Possible directions will include the
following:

1. making the foraging scenario more realistic, substituting the virtual objects we tested so far with
real, physical objects;

2. testing different object distributions and different object types, to study novel strategies to clean
up the environment from the objects;

3. integrating collective transport into foraging;

4. testing the system in an indoor-like environment;

5. devising techniques to deposit the collected objects in a structured way, to achieve a simple form
of collective construction.

2.6 Work on Real Robots

Work on the real robots will be twofold. First, we are planning to further develop the robots adding to
them a magnetic gripper. Subsequently, we will exploit the gripper-equipped robot to demonstrate the
foraging scenario in the real-world.

ASCENS 11

D7.1: First Report on WP7 (Final) November 15, 2011

Figure 2: The marXbot magnetic gripper.

2.6.1 Current Magnetic Gripper Prototype

We designed a prototype of a magnetic manipulator to endow the marXbot with the ability to grasp,
displace and position small objects. This will allow the marXbot to build structures and to manipulate
its environment. The current prototype of the magnetic manipulator features 6 infrared proximity
sensors, which allows the marXbot to precisely align itself with the objects to grasp (Figure 2, top).
As the marXbot can rotate on the spot and move freely on the ground plane, the manipulator has only
three degrees of freedom. The robot can elevate and rotate its manipulator to position an object at
a given altitude and pitch angle. The manipulator uses a magnetic switchable device to implement
gripping. This device consists of a permanent magnet that rotates inside two pieces of metal (Figure 2,
bottom). Depending on the orientation of the magnet with respect to the pieces of metal, the magnetic
flux is either open or closed. When the flux is open, the device grasps external ferromagnetic objects;
when the flux is closed, the device does not attract external objects. This device is bi-stable, and thus
does not consume energy excepted when changing states (opening or closing). This operation lasts
about 1 second.

2.7 Outlook

Over the course of the robotics case study, we will apply the techniques studied by the partners of
the ASCENS project to a foraging scenario whose complexity can be tuned. In this way, we will be
able to highlight the interesting parts of the approaches and techniques we will develop, by designing
targeted experiments. The ultimate purpose of this case study is to develop new robot behaviors that
challenge the performance of those present in the literature.

We will use both simulated and real robots. Simulation will give us the possibility to gather

ASCENS 12

D7.1: First Report on WP7 (Final) November 15, 2011

statistical evidence on the performance and features of the behaviors we will design and develop. Real
robot experiments will serve as the final test, demonstrating the effectiveness of the behaviors in real
application scenarios.

In more general terms, one of the most interesting aspects of the robotics case study is that all
our activities will result in the construction of a unprecedented link between abstract theory and real-
world-grounded practice.

The work of the second year will be devoted to starting model synthesis. We will initially consider
robots as SC, and robot swarms as SCEs. We will identify the characteristic features of the application
scenario and study how to model mobile SCEs in a simplified version of the scenario.

ASCENS 13

D7.1: First Report on WP7 (Final) November 15, 2011

3 Resource Ensembles as Science Clouds

3.1 Introduction

Cloud computing is a recent trend in large scale computing that involves the provisioning of IT re-
sources in a dynamic and on-demand fashion. It supports both conventional scenarios such as scale-
out, in which companies opt to extend locally available, internal resources with additional external
capacities from a cloud temporarily or for a longer period of time, and new cloud-specific usage sce-
narios like purely cloud-based applications that may be offered in a cost-efficient, demand-driven way.
In either case, cloud users are only billed for the resources that are actually used, which makes cloud
computing a compelling solution for highly-dynamic fields and environments, in which the use of
dedicated data centers would not be economically optimal.

There is no common and well-understood definition of clouds or cloud computing due to the fact
that it is a rather new phenomenon that has been approached and implemented in a variety of different
ways. However, depending on the type of resources that are managed and provisioned, we can classify
clouds either as SaaS, PaaS, or IaaS solutions:

• Software as a Service (SaaS) involves the provisioning of applications via a cloud, i.e. the of-
fering of software on an on-demand basis. Google Apps is a great example of an SaaS cloud,
offering services such as e-mail, calendar and document collaboration to both individuals and
enterprises based on different subscription plans.

• Platform as a Service (PaaS) can be regarded as a layer below SaaS because it involves the
provisioning of a development and execution platform for applications that run in a cloud. PaaS
is typically very interesting for developers and service providers because it allows them to write
software that executes on a large, distributed system and can use resources in a very dynamic
way, e.g., it is typically possible to allocate additional processing power for applications in order
to react to additional, time-limited usage by customers.

• Infrastructure as a Service (Iaas) is regarded as the lowest level of cloud operation modes.
IaaS equates to the provisioning of virtual computers that are accessible over a network, i.e.
the Internet, and may run a variety of operating systems. These virtual computers or virtual
machines are typically used as the basis for PaaS and, transitively, SaaS solutions. Besides the
provisioning of virtual machines, IaaS cloud computing also involves other virtual computing
components, such as virtual network switches or data storage. In all cases, the usage of these
resources is monitored and billed to the consumer.

All three variants of cloud computing are related to one another as can be seen in Figure 3 and
are well established and provided on a commercial basis by providers such as Amazon, Google or
Rackspace.

As any computer system, cloud computing also presents some problems in terms of availability
and data protection. The nodes, whether physical hosts or virtual machines, work with each other
to perform certain tasks or provide some services. Thus, the hosts in the infrastructure layer work
together becoming clouds in the same way than an ensemble of virtual machines can work together on
the platform layer to deliver a service jointly.

At the moment that, due to any failure, one or more nodes become unavailable, the virtual ma-
chines running on hosts and the services being executed in the virtual machines stop working properly.
This situation is even worse when a node failure results in a loss of data.

The same protection mechanisms used in conventional deployments in terms of redundancy and
fault tolerance should be used in clouds. In addition to this, new techniques derived from self-
awareness of the nodes and the surrounding environment, and the collaboration of the entities, both

ASCENS 14

D7.1: First Report on WP7 (Final) November 15, 2011

Provides Consumes

Consumes

Supports

Supports

IaaS
(Infrastructure as a Service)

PaaS
(Platform as a Service)

SaaS
(Software as a Service)

Developer

End-user

Vendor

Figure 3: Relationships between IaaS, PaaS and SaaS as presented in [BM09].

main objectives in the project, will allow new security mechanisms to offset the temporary loss of
nodes, allowing others to take over the tasks associated to the fallen nodes and minimizing any infor-
mation loss, to build a more robust European science network.

3.2 Domain

The dynamic cloud infrastructure provides a lot of new possibilities, but also increases the complexity
in the areas of management to make use of these added capabilities. In this section we describe the
specific challenges that we are addressing within this use case to overcome the additional complexity
and unlock the capabilities of the dynamic infrastructure cloud.

The general area of interest is in the domain of application execution and management within the
cloud environment. Applications and storage systems are neither build with the cloud capabilities
in mind nor should application developers care about these capabilities and include them in their
development. The latter point is important because when the infrastructure requirements are tightly
coupled with the application the possibilities to move an application to a different infrastructure are
reduced significantly.

Therefore our interest is to provide prototypic tools and strategies that allow the application de-
veloper and manager to develop, deploy and run an application in a distributed cloud environment
including the application itself as well as the data-elements. The envisioned ASCENS Science Cloud
will offer elements that simplify the development, deployment and execution of the application by
abstracting the complexity of the infrastructure away for the user.

These prototypic tools and guidelines of the ASCENS Science Cloud will effectively allow the
application developers and managers to achieve:

• A better failover capability without highly specific and expensive hardware.

• A better performance for a given price.

• Less need for manual administration.

ASCENS 15

D7.1: First Report on WP7 (Final) November 15, 2011

• A better transition behavior when a move between platforms is required.

To further specify the concrete issues, which are going to be addressed in the use case, these high-
level goals will be broken down into specific issues in the following that will be addressed and the
planned goals for each of these issues.

Scheduling of application elements Modern applications are segmented in different application el-
ements that are loosely coupled and inter-communicate via network protocols - they can be seen as
application ensembles. This decoupling of application elements allows the basic concept of horizon-
tal scaling as well as the distribution of application elements on different systems. In the cloud this
usually local distribution can be taken to the next level and application elements can be distributed
across different cloud-sites. That distribution introduces a new level of complexity for two main rea-
sons: the network connection can substantially differentiate in size and quality as well as performance
characteristics can differentiate a lot. Therefore a smart scheduling of application elements during
deployment and runtime requires an inside view of the applications requirements as well as an outside
view of the cloud capabilities. Both viewpoints need to be matched in order to achieve a beneficial
placement. These factors of additional complexity should be abstracted as well as possible from the
Science Cloud user.

Scheduling for fail-over capabilities in a distributed environment Distributed and decoupled en-
vironments carry a great potential to improve the availability of an application if smartly used. In a
conventional application execution environment failure risks are often highly entangled – for instance
by using single network access lines or same hardware technologies. A decoupled and distributed
cloud reduces this risk by factors as not only completely the environments itself are decoupled, but
also the environments are using heterogeneous technologies. Therefore a distributed application ex-
ecution can leverage these capabilities when being scheduled across the distributed cloud and also
reacting correctly when a single cloud node misbehaves. Nevertheless the complexity of distribution
carries risks itself, for instance a higher risk of human errors – that creates the interest for the Science
Cloud to provide the distribution capabilities but also abstract the concrete scheduling for fail-over
from the user.

Data location management Another challenge in distributed cloud environment is data location
management. This is due to the fact that data in comparison to the application itself is more costly to
move around the environment, as huge amounts of data will block also the network capabilities. As the
connection between data and application as well has some quality requirements to be considered it is
as well not easily possible to keep all data in one spot and connect the applications to this central data
hub. This again drives the requirement to reduce the complexity for the user when it comes to storage
placement, which can be done by allowing the user to define the requirements on the meta-level which
will be used to define a concrete distribution schema automatically. These meta-requirements can
be for instance location constraints (”data needs to reside within Europe”) or availability constraints
(”data needs to be available 99.999 percent of the time”). These constraints then drive the concrete
data placement and replication algorithms (e.g. ”replicate the data in at least five cloud nodes within
data center A and data center B”).

All these specific issues require an infrastructure that abstracts the concrete scheduling of appli-
cation elements and data elements from the user, but still makes use of the beneficial aspect of a
distributed environment. The Science Cloud conceptual works and prototype implementation strives
to deliver solutions for such an environment. Finally after the implementation of the basic infrastruc-
ture the Science Cloud is essentially a basis for a self-aware distribution and an autonomous behavior

ASCENS 16

D7.1: First Report on WP7 (Final) November 15, 2011

of an application and its data.

3.3 Requirements Analysis

In this section we will present and discuss the requirements (see Table 3) which we distilled from
discussions and our research work during the first project year. These requirements are allocated in
the three groups a) functionality, b) architecture and c) usability. We believe them to be a great starting
point for the design of our solution and will use them as the basis for an evaluation of the Science Cloud
software at the end of the project. Nevertheless, we recognize that over the course of the ASCENS
project these requirements might change or that additional requirements might arise.

Functionality
Req. 1: Distributed Storage
Req. 2: Distributed Application Execution
Req. 3: API and Programming Library

Architecture

Req. 4: Built on Autonomous Nodes
Req. 5: Robustness under Unstable Conditions
Req. 6: Adaption to Changing Environments
Req. 7: Utilize IaaS Cloud
Req. 8: Support for Heterogeneous Operating System Environments

Usability

Req. 9: Zero-Configuration Experience
Req. 10: Standards-based Interfaces
Req. 11: Integration into OS
Req. 12: Graphical User Interface
Req. 13: Well-Documented APIs

Table 3: Requirements for the ASCENS Science Cloud

Req. 1 Distributed Storage

Cloud storage is a conceptually simple, yet very powerful and important service in that it allows its
users to upload files ”to the cloud” and to access them subsequently not only from the machine the files
originated from, but also from other devices, for example from their smartphone via a 3G connection
to the Internet. This ubiquitous access to our data removes our dependency on physical storage, which
is prone to data loss if backups to other media are not made regularly, and enables us to easily share
data with our friends and colleagues. Especially in the domain of science and research the exchange
of data, i.e. data collected by sensors or the output of simulations, is a key element for cooperation.

Associated with data storage we find the concept of managing and enforcing access rights for
individual users and for groups, i.e. the members of one family or research facility. If sensitive data is
to be stored in the cloud, the storage provider must guarantee its security. Cryptographic methods serve
as a great basis for this purpose but must be applied with care: Data must be stored and transmitted
securely, such that it cannot be read and modified – on the storage devices or in transit – by people
that lack these access rights. At the same time, management of data security must be made possible
by simple, straightforward means, otherwise user acceptance will be low and mistakes caused by
unintuitive or complicated user interfaces might result in sensitive data becoming accessible by an
unintended audience.

Our Science Cloud shall provide its users with storage for their data and enable data sharing
between them. A hierarchical file system shall be employed, allowing users to organize their files in
directories as they are used to do it on their desktop computers. Furthermore, the file system shall look

ASCENS 17

D7.1: First Report on WP7 (Final) November 15, 2011

the same to all Science Cloud users, allowing them to exchange paths to point to files and directories.
Access control mechanisms shall be in place to restrict access to certain files and directories to groups
of users.

Req. 2 Distributed Application Execution

Computers evolved from machines capable of performing simple tasks to power horses that are able
to carry out complicated and detailed simulations in the blink of an eye. However, with the increase
in raw computing power and storage capacities, our use of computers is also changing day by day: In
research, we tend to use larger, higher-resolution data sets as input for our programs or have higher
expectations regarding the details of simulation results. A single computer might not suffice to deliver
the required computational power, leaving us only with the option of combining the resources of many
machines to solve our problems.

Modern processors are made up from multiple computing cores that execute code in parallel.
Software must be written accordingly, i.e. split up into multiple threads of execution, to make the
best use of such hardware. Parallelism of software can also stretch across multiple machines that
communicate with each other not through, for example, access to shared memory but via explicit
messages that are sent over a network. Such applications can be ”rolled out” to a large number of
individual, connected computers and perform well if the network doesn’t become a limiting factor.

Our Science Cloud shall support the execution of applications across multiple machines. The
distribution of instances shall be taken care of by a decentralized scheduling system that is aware of
the available computation power and the load of each node in the cloud. Different scheduling strategies
could be tried, e.g. attempting to minimize the execution time or the power consumption of the cloud
while it executes an application.

The shared storage, as described in Req. 1, shall serve as the basis for bootstrapping: Users should
be able to upload their programs including required input data to the cloud file system and start the
application from there. Furthermore, the applications should be able to write their output to files in
the cloud file system, allowing the user to retrieve them via the same interface that he used to supply
the input data.

Monitoring of running instances is also a desirable feature of the Science Cloud. Users should
be enabled to see the applications they started in a list with information about running time, CPU
usage, network usage and memory usage. Possible user actions could include stopping the application
and restarting it. Other interesting information about running applications could be data about the
placement of application instances, i.e. on which cloud nodes they are being executed.

Req. 3 API and Programming Library

The two main features of the Science Cloud will be data storage with a unified file system on top
allowing easy sharing of files (see Req. 1), and distributed application execution (see Req. 2) enabling
users to harness the computational power of a large number of connected computers. Our cloud
therefore best qualifies as a PaaS solution. In order to enable use of these features, an API with
corresponding programming libraries shall be provided.

For the storage service, an established protocol shall be supported to allow the use of existing
tools to interact with the Science Cloud. The traditional File Transfer Protocol (FTP) [PR85] possi-
bly in the secure variant FTP over TLS [FH05] could be a viable choice. The Network File System
(NFS) [SCR+03] protocol or the Common Internet File System (CIFS) [LN97] protocol (also known
under the name Server Message Block or the associated acronym SMB), would be possible alterna-
tives, which are, however, not as light-weight and would introduce a large overhead. A leaner protocol
is WebDAV [GWF+99], which is based on HTTP and less complex to support and to implement.

ASCENS 18

D7.1: First Report on WP7 (Final) November 15, 2011

For the execution of applications we argue to restrict the Science Cloud to support for Java [GJSB05]
applications due to a number of reasons, which we will discuss in the following:

• In discussions with other partners in the project we determined that Java is the language of
choice for most of the work done in the context of the ASCENS project. It therefore makes
sense to support the execution of Java application in the Science Cloud in order to allow our
partners to harness the cloud for their purposes, e.g. for performing computationally expensive
model checking operations or for running large-scale simulations.

• Java is part of a mature ecosystem for software development: A large number of programming
libraries as well as software development environments are available, which both make the
creation of Java-based applications simple compared to using other languages.

• The Java Virtual Machine (JVM) [LY99] is a great abstraction layer over the operating system
and supports a large number of architectures. This enables us to build the Science Cloud on
top of heterogeneous resources, yet allows users to develop and run their applications without
addressing the properties of the underlying machine that is selected by the scheduler for the
execution of an application.

• Security is an important aspect when it comes to executing code from an unknown source. With
so-called Sandboxing Java provides a means of isolating running code from the host and to
limit its access to the host. For example it is possible to deny any application that is running in
a sandboxed environment access to the host’s file system and to allow communication with the
outside world only via one specific network socket.

In order to support the distributed execution of Java applications, we will also need an API or
programming library that allows any running instance to communicate with potential other instances
on the same machine or on any other machine in the Science Cloud. The Message Passing Interface
(MPI) [Mes09] could be a basis for such a library as it provides an abstraction layer over the physical
placement of instances and associates each instance with a unique ID that can be used for send and
receive operations. MPI is very powerful, however, in that it has support for the basic operations of
message passing (send and receive), but also for more complex operations that involve a collective of
instances, such as reductions. It remains to be seen to what extent these operations can be supported
by the Science Cloud application programming library.

Req. 4 Built on Autonomous Nodes

In the ASCENS project we investigate how we can build complex software and systems by employing
autonomous components. In the Science Cloud case study we apply this line of thought to clouds and
will attempt to build a platform on top of autonomous computers, which are not under the control
of a single entity, e.g. a cloud service provider, but are potentially owned by many individuals who
contribute parts of their computing resources voluntarily. This has a number of effects:

• Participants in such a system are not obliged to remain and are free to leave and come back at
any time.

• The conditions under which a participating computer can be used can also change from one
moment to the other if, for example, its owner decides that he no longer wants to support the
execution of applications or that he reduces the amount of storage space he contributes to the
system.

ASCENS 19

D7.1: First Report on WP7 (Final) November 15, 2011

• Participating computers can also not be assumed to be maintained and to remain in good condi-
tions. Components could fail, such as the hard disk resulting in (partial) data loss, or the network
interface card yielding an outage of all of the computer’s resources.

In Req. 5 we will further detail the requirements for a solution that can function well under these
conditions, but it should be clear at this point that robustness against failing or disappearing resources
must be a key element of any solution. We believe that such a solution will not only work well in
the scenario described, but also in traditional data centers where cloud services are hosted: Failure of
nodes in the data center need not be regarded as critical anymore, since the system will adapt itself
accordingly. Therefore higher availability of the offered services can be accomplished.

Req. 5 Robustness under Unstable Conditions

The Science Cloud software shall be robust against failing components in the sense that it adapts itself
to new system configurations, which might be caused by disappearing and reappearing nodes that
provide storage or computational power, in order to continue the delivery of services to its users.

Robustness against data loss can be avoided through replication of data, which means that a given
unit of data is stored not only on one computer in the Science Cloud, but on multiple computers,
such that if one computer is no longer able to service data requests, other computers can take over.
Although this approach does not yield an absolute guarantee that data will never be lost or becomes
inaccessible, it reduces the probability that such an event occurs.

Robust execution of applications is more difficult to achieve: One valid approach consists of
automatically restarting applications that have ”disappeared” from the Science Cloud because the host
that ran it became unavailable. A restart would, however, be associated with a loss of any progress
made by the application, e.g. in its calculations, if no appropriate means such as checkpointing are
employed, where the application state is saved at regular intervals and can be restored.

Another way of avoiding application or service downtimes is to run multiple instances at the same
time, which could, however, be associated with a number of problems and questions:

• If multiple instances are active at the same time, which instance is responsible for processing
user requests?

• In case multiple instances can process user requests and no single instance needs to be respon-
sible, is there any communication needed between these instances in order to synchronize any
global application state?

• Computational resources will be wasted if the exact same calculations are performed in parallel.

As can be seen from these thoughts, robustness of storage and execution of applications are diffi-
cult goals to reach, which should, nevertheless, be attempted in the Science Cloud case study.

Req. 6 Adaption to Changing Environments

The Science Cloud will be built on autonomous nodes (see Req. 4), which has as a consequence that
resources can become available and unavailable at any point in time. Robustness, as laid out in Req. 5,
primarily addresses the point of leaving nodes that no longer contribute their resources. We would,
however, also like to make the best use of any new resources that become available and expect the
Science Cloud software to employ these resources for the delivery of its services.

In particular, any new storage capacities that become available shall be used automatically to
increase the availability of data through the creation of additional data replicates.

ASCENS 20

D7.1: First Report on WP7 (Final) November 15, 2011

The use of additional computational power to speed up the execution of already running applica-
tions is more challenging: By migrating application instances from their current hosts to new, more
powerful hosts, the run-time performance of the application can be increased. However, it is not
straightforward to determine when this is the case and when such a migration would yield better re-
sults:

• Compute-bound applications benefit from running on machines that have faster CPUs. Memory-
bound applications will, however, typically not benefit from faster CPUs, as the main memory
or potentially also the hard disk are the factors limiting their run-time performance.

• Performance of an application can also very much depend on the parameters of its host’s net-
work connection. A machine with a slow CPU but a very high-quality connection to the Internet
might very well deliver better results than any super-fast computer on an Internet connection
with worse quality characteristics (delay, jitter, transfer rate, etc.).

Although complex, attempts shall be made to utilize new nodes in the Science Cloud to speed up the
execution of already running applications.

Req. 7 Utilize IaaS Cloud

The Science Cloud shall be able to run on top of an IaaS layer and to reconfigure it autonomously in
such a way that it adapts itself to the current workload. If, for example, the Science Cloud determines
that it has too little computational resources, it shall ask the IaaS layer for additional virtual machines
that can run any applications that are pending. Virtual machines that have become idle after a while
shall be terminated in order to release the resources they would otherwise continue to consume without
doing any work.

Req. 8 Support for Heterogeneous Operating System Environments

Our Science Cloud case study is an example of so-called volunteer computing, which means that the
platform will be based on resources that are provided by users on a voluntary basis, see Req. 4. It
will therefore be important to enable as many people as possible to make contributions as this directly
affects the availability of resources in the Science Cloud. In light of the diversity of operating systems
that are in use today, the Science Cloud software should be developed as cross-platform software from
the beginning in order to support heterogeneous operating system environments, which we expect to
find in our user base.

Referring back to Req. 3 where we argue that support of executing Java applications has several
benefits in general and in the context of the ASCENS project, we recognize the fact that the JVM
is available for all major operating systems. Developing the Science Cloud software in Java would
therefore be a great step towards supporting a large number of operating systems, because Java code
will be able to run there without any or only little OS-specific modifications.

Req. 9 Zero-Configuration Experience

The Science Cloud depends on people that voluntarily make their resources available for use by others.
It is therefore very important to make hurdles of participation in the Science Cloud very small, because
otherwise people could quickly lose interest and become frustrated if they have to spend a lot of time
configuring the software.

Zero-configuration protocols such as Universal Plug-and-Play (UPnP) [UPn00] or DNS-Based
Service Discovery (DNS-SD) [CK06] shall be employed by the Science Cloud software to make the

ASCENS 21

D7.1: First Report on WP7 (Final) November 15, 2011

experience of using it as pleasant as possible. However, care must be taken at the same time to always
leave the user in control, e.g. that he can control the amount of resources he contributes to the cloud.
Otherwise he would not trust the software and would most likely also refuse to participate.

Req. 10 Standards-based Interfaces

Making accessible the functionality of the Science Cloud via standards-based interfaces has the benefit
of allowing users to employ tools of their choosing that support these standards and not forcing them
to use proprietary tools developed as part of our solution. Care should therefore be taken to design the
Science Cloud in such a way, that for example the storage service can be used via established protocols
like WebDAV or FTP, as previously discussed in Req. 3.

Req. 11 Integration into OS

When it comes to managing data and files, we typically prefer the mechanisms that are provided to
us by our operating systems, i.e. Windows Explorer or the Finder application on Mac OS X, over any
additional programs. It is therefore desirable to provide users with the option of connecting to the
Science Cloud storage service in a way that is well-integrated into their operating system. Mounting
the Science Cloud as a network drive could be a way to achieve this, which is the typical way of
making accessible remote storage in desktop operating systems.

Req. 12 Graphical User Interface

Although command line tools have certain benefits, especially for experienced users that know the
set of available commands and make use of scripting to automate specific recurring tasks, graphical
user interfaces are typically able to provide more intuitive access to programs and services. Use of
the Science Cloud should preferably be allowed via both command line tools and programs featuring
graphical user interfaces, in order to reach higher acceptance among users.

In particular access to the distributed file system should be provided in a graphical manner, prefer-
ably via good integration into the OS (see Req. 11) or in case this proves too difficult to achieve, via
tools with GUIs featuring established storage access memes, such as drag&drop copying and moving
of files and directories. Furthermore, access to monitoring data (e.g. about the storage volumes used
or running applications) should be provided in a graphical manner to make this kind of information
more accessible.

Req. 13 Well-Documented APIs

The documentation of the Science Cloud APIs and associated programming libraries is a key building
block for the success of our project: Not only the use of the Science Cloud from a plain consumer point
of view, who, for example, wants to store data in the cloud, is important. Developers are also very
important users of the cloud and shall be able to find all the information they need for creating their
programs and getting them to work in an optimal way in the Science Cloud. Good documentation
and tutorials that demonstrate how to use certain features of the cloud should therefore receive the
necessary attention.

3.4 Approach and Design

In the following we will present our design of the Science Cloud software, which we will implement
in the months to come and which we hope will ultimately fulfill all of the previously discussed re-

ASCENS 22

D7.1: First Report on WP7 (Final) November 15, 2011

quirements. After providing a high-level overview of our design, we will provide additional details
about main building blocks of the software to the extent that they are already available.

3.4.1 High-Level Overview

The Science Cloud software will be a PaaS solution for cloud computing providing data storage and
distributed application execution as its two major services to users. The software will make available
storage and computing resources of host computers to the cloud platform. By implementing it in Java,
we make sure that it will be able to run on all major operating systems (with support for the JVM),
and at the same time provide an abstraction layer over these operating system for the execution of Java
applications in the Science Cloud. The Science Cloud can therefore be regarded as a Java Platform
as a Service solution, which we hope will be used by partners in the ASCENS project to run their
applications.

P
la

tf
or

m
 la

ye
r

C
ol

le
ct

iv
e

la
ye

r

Ia
aS
$V
M
$

Ia
aS
$V
M
$

Ia
aS
$V
M
$

Ia
aS
$V
M
$ Ia
aS
$V
M
$

Ia
aS
$V
M
$

Ia
aS
$V
M
$

Ia
aS
$V
M
$

Science Cloud instances creating a peer-to-peer network.

LAN LAN

WAN

WAN

WAN

IaaS Data Center

In
di

vi
du

al
 M

ac
hi

ne
 la

ye
r

Physical Machine

Ia
aS
$V
M
$

Virtual Machine
Science Cloud software running on physical and virtual machines.

..."

Expose local storage capacities
Store files and metadata

Expose local computation power
Execute and monitor Java applications

Control IaaS cloud
Start and stop virtual machines as required

Expose cloud storage capacities
Store files and metadata

Expose cloud computation power
Execute and monitor Java applications

Provide information about platform
Health of the cloud, status of machines, ...

Access to the whole Science Cloud platform via interfaces provided by the local instance.

Figure 4: Science Cloud Software Layers

Figure 4 presents a high-level overview of the software design, illustrating that the Science Cloud
software will be based on three levels of abstraction:

Individual Machine layer At the bottom layer we find single instances of the software running on
either physical machines or on virtual machines that are, for example, hosted in an IaaS cloud. Every
instance manages the resources that are available on its host – as configured by the user, i.e. respecting
quotas or other restrictions – and makes them available via the Science Cloud protocol. If a virtual
machine detects the presence of a supported IaaS cloud management interface, it can utilize it to clone
itself in case of resource shortage in order to make available additional resources in the Science Cloud.

ASCENS 23

D7.1: First Report on WP7 (Final) November 15, 2011

Collective layer In the middle layer we find instances running on several hosts in different network
domains, connected via secure peer-to-peer connections in these domains or on an inter-domain basis
(e.g. , over the Internet) thereby establishing a network of Science Cloud nodes. Discovery of peers
is performed automatically via the DNS-SD protocol, probing or well-known peers. Firewalls and
routers that perform network address translation (NAT) [SH99] are handled in this layer, too, in order
to allow for point-to-point connections and data transfer between any two nodes, potentially via routing
in the peer-to-peer network.

Platform layer The top layer in the figure represents the Science Cloud platform built on top of the
collective of autonomous nodes in the middle layer. It provides interfaces to the PaaS’ users via the
local running instance of the software for storage, distributed application execution and monitoring,
and contains the necessary logic to distribute and manage data and to schedule application execution
in the cloud in a decentralized manner.

3.4.2 Distributed Storage

After conducting a survey about the state of the art in the field of distribute storage and discussions
with colleagues at LMU, we have decided to use a distributed hash table (DHT) as the basis for the
Science Cloud storage service.

DHTs expose the two methods put(key, value) and get(key) : value just like any regular hash
table and thereby enable the storage and the retrieval of values that are addressed via a key. Data is,
however, not stored on a single computer, but in a distributed system, or to be more specific, a special
kind of peer-to-peer network in which the participating peers organize themselves according to a set
of rules in order to facilitate access times to values in the order of O(logN) (with N being the number
of nodes in the network).

Many approaches to implement DHTs exist and they differ mostly with regard to the topology that
is created by the nodes in the DHT network. Chord [SMLN+03], Kademlia [MM02], Pastry [RD01b]
and CAN [RFH+01] are examples for DHTs. These approaches typically assume keys with a fixed
length of 160 bits and allow the storage of arbitrary amounts of data under each key. Every node in
the DHT network is typically responsible for a range of keys, storing any values published under keys
in this range on its hard disk. The requests to put and to get a value are handled in the network via
routing of associated messages based on the supplied key and the network topology, which is built to
enable logarithmic behavior. Replication is employed to make sure that data is not stored on a single
node, but multiple nodes such that in the event that one node leaves the network, the data remains
available.

On top of such a DHT a distributed file system can be created, which has been demonstrated with
CFS [DKK+01], IvyFS [MMGC02] and PAST [RD01a], just to name a few examples. Our approach
will be similar to them:

• The contents of a file are split into blocks of fixed size. Each block is hashed using the SHA-1
algorithm [EH11] to generate a 160 bits long key. Subsequently, the block is stored in the DHT
under this key: put(hashSHA1(block), block).

• File meta data, including a list of the keys referring to its data blocks, is also stored in the
DHT in the form of an XML manifest. The key for this document is generated using hashing
of the file’s path in the file system again using the SHA-1 algorithm, e.g. put(hashSHA1(
”/ascens/deliverables/wp7/d71.pdf”),manifest).

• The contents of a directory – a list of the files it contains – are stored in an XML manifest and

ASCENS 24

D7.1: First Report on WP7 (Final) November 15, 2011

are put into the DHT just like meta data for a file: Its path is hashed and is used as the key. The
root directory of the file system / is associated with a well-known key.

The robustness of our Science Cloud distributed file system against churn of nodes will be drawn
from the underlying DHT’s robustness against this effect, yielding a file system with high availability
of data even under unstable conditions. In order to reach good integration of the file system into the
user’s operating system, we intend to make the distributed file system available via WebDAV, which
allows it to be mounted as a network share directly under Mac OS X and Windows.

3.4.3 Distributed Application Execution

The distributed storage service of the Science Cloud will be the basis for the distributed execution
of applications: We expect users to store their programs including any external dependencies such
as libraries or data files in the Science Cloud file system. Subsequently, they will be able to use a
browser-based interface provided by the local running instance of the Science Cloud software to select
the executable file, to provide arguments to the program, e.g. the path to input and output files in the
distributed file system, to specify the number of instances that should be started and to ultimately
launch the application. Furthermore, the user will be able to specify minimum requirements of the
application with regard to available RAM or CPU speed.

Once a user submitted the request to launch an application, the scheduling component of the
Science Cloud will become active: It will attempt to find a node suitable for the execution of the
application and start it there in a sandboxed JVM. If no suitable nodes can be found, those nodes that
are running in an IaaS cloud will be asked whether they can supply the required computation power
by bringing up new virtual machines or not. Initially we will support the Zimory IaaS solution only
and interact with it through the Zimory Enterprise Cloud API, a set of RESTful web services that
can be called to request new resources or information and statistics about the current state of the IaaS
environment. If necessary, this API will be extended within the context of the ASCENS project to
provide all relevant information about the infrastructure layer to the Science Cloud software. At a
later time we can consider adding support for other IaaS solutions, such as Amazons EC2, just to give
an example.

The sandboxing we will employ is a security measure and entails that a running Java application
will not be able to interact with any other running processes on the host or to access its file system.
Reading and writing of files will be restricted to the Science Cloud file system. Furthermore, we are
also thinking about limiting access to the network, such that an application cannot listen on random
ports or open arbitrary network connections, as such capabilities are sensitive with regard to network
security. However, using a special library, application instances will be able to communicate with
other instances or even create new instances.

Via the browser-based interface the user will also be able to get information about currently run-
ning applications started by him, such as running time, start time, CPU or network usage. Furthermore,
the user will be able to stop and restart applications.

3.5 Outlook

Further work for the upcoming period is focused on two aspects of the platform: distributed application
execution and distributed storage. Work on these two aspects will be centered around building a first
prototype or laying the basis for such a prototype. As part of this work we will continue to improve
the design of the Science Cloud software and to cover more details, also using the modeling tools and
languages that are gradually becoming available in the ASCENS project as explained in the description
of task T7.1.2.

ASCENS 25

D7.1: First Report on WP7 (Final) November 15, 2011

Distributed Storage

An implementation of a first working prototype of the distributed storage service of the Science Cloud
is a goal of the case study we wish to achieve in the second year of the project. As discussed pre-
viously we will utilize a distributed hash table to build a distributed file system that is robust and
self-organizing. In addition conceptually possible extensions will be analyzed, such as the dynamic
addition of storage devices that are available at nodes into the file system (”mounting”). Furthermore,
smart distribution of data, i.e. to minimize transfers between nodes, will be a research topic in the next
year.

Distributed Application Execution

The core of the distributed application execution part is the above described functional workflow
driven by the user creating the basic environment to start the distributed application. This requires the
basic provisioning functionality based on a system template and furthermore on demand customization
capabilities. The Zimory cloud framework includes an infrastructure to provision not only basic virtual
machines, but also the capability to customize these upon different triggers. This so-called ”meta-data
distribution framework” will be utilized to e.g. configure the JVM sandbox during the start process.
To do this ASCENS specific meta-data packages will be implemented and made available to easily
create a distributed application framework in the Science Cloud.

Furthermore the basic process should be conceptually extended, by adding self-management con-
cepts during the runtime period. This extended regulation cycle is shown in Figure 5. It contains
two main elements - the platform segments (depicted as the black boxes ”Platform 1, 2, 3”) and the
application elements (depicted as the blue boxes ”Service ensemble”).

Figure 5: Regulation Cycle

Once a distributed application is running the platform segments deliver information on their ca-
pabilities and status. The service ensembles are processing this information individually and also in
a coordinated way. From this analysis potentially actions are derived that are partially being applied
to the platform segments. Examples for this can be additional load that requires additional RAM and
then as well a JVM reconfiguration.

This will be done by generating triggers inside the application environment. These triggers can use
own information or also information delivered through the IaaS cloud API. The output of the trigger

ASCENS 26

D7.1: First Report on WP7 (Final) November 15, 2011

can be as well new infrastructure elements, reorganization of infrastructure elements or reconfiguration
of components (also using the above mentioned meta-data facility).

With regards to this part the work will focus on the conceptual basics for the communication
structure and basic triggers.

ASCENS 27

D7.1: First Report on WP7 (Final) November 15, 2011

4 Ensembles of Cooperative E-Vehicles

E-mobility can be defined as a transportation concept by means of a network of electrical vehicles.
Due to CO2-emission reduction legislation and decreasing oil availability, electric (e-) vehicles will
gain a greater share of the market. With e-mobility many new constraints must be considered such
as limited range and extended battery recharging time. The driver’s “range anxiety” is a consequence
and a huge barrier for a successful launching of e-vehicles into the car market.

E-mobility is modeled by ensembles of cooperating E-vehicles, taking into account numerous
requirements and restrictions of global traffic situation and individual drivers as well as infrastructure
and operational requirements like parking availabilities, re-charging stations, battery life-time etc.

4.1 Motivation

The e-mobility case study brings most of the challenges that the theories and methodologies devel-
oped in ASCENS are trying to solve. By applying ASCENS theory to the e-mobility system a novel
approach is taken to thematically, temporally and spatially coordinate mobility entities. The traf-
fic system ensemble is modeled as a heterogeneous system composed of intelligent and self-aware
nodes, which are connected by information and communication technology (ICT). ASCENS provides
a generic approach to model and control e-mobility entities in order to provide seamless coordination
of driver-vehicle-infrastructure networks. It considers the driver, the vehicle and the infrastructure as
interacting autonomous Service Components (SC), which are orchestrated into Service Component
Ensembles (SCEs) in order to reach a goal, e.g. providing the individual user with a seamless travel
plan.

The main objectives of this deliverable are to provide an analysis of e-mobility, its structure and the
scope. A comprehensive description is provided of how ASCENS notion can be applied to seamless
electric mobility planning. In particular the following questions are answered:

• What are the real world representations of the rather abstract notion of service components
within the e-mobility scenario?

• What are the representative service component ensembles?

• When do they reorganize and what are the implications on resources like time, space and en-
ergy?

A representative e-mobility scenario is used to illustrate the notion of Service Components and
Service Component Ensembles.

4.1.1 Problem Statement

E-mobility resources — be it time, energy or parking space — are increasingly constrained. The
traffic system is dynamic, complex and heterogeneous. Information about system states — be it traffic,
vehicle or energy grid related — are decentrally monitored and made available through services.

This being the situation, three challenges need to be addressed in greater detail. Firstly, range is the
greatest perceivable obstacle of electric vehicles and together with time one of the scarcest resources.
Secondly, journey planning addresses the complexity issue of future mobility. Thirdly, the dynamics
of the traffic system and the decentral distribution of information necessitate service coordination.

Need of exact range prediction: It has to be guaranteed that throughout the user’s itinerary the elec-
tric vehicle never underruns a limit energy level. However, the user should always be able to
behave as flexibly and spontaneously as with conventional vehicles.

ASCENS 28

D7.1: First Report on WP7 (Final) November 15, 2011

Need of journey planning: In contrast to conventional vehicle trips, electric vehicles face tighter
constraints such as limited range and extended charging times. Information on resources is
decentrally distributed. Complex interactions, distributed knowledge and tight constraint require
planning.

Need of service coordination: Many future services can support the journey planning process. Ex-
amples are traffic information services, booking services for charging stations or mobility ser-
vices such as car sharing or ride sharing services. The latter are able to overcome range limita-
tion and the lack of infrastructure availability, however at the cost of coordination complexity.

In summary, the central challenge is to deal with large amounts of distributed information both
highly dynamically and intelligently in order to reach the goal of seamless travel scheduling.

4.2 Domain/Case Study Short Description

The model driven requirement analysis approach focuses on alternative scenarios of mobility. The ba-
sic scenario (S0) considers individual users and privately owned e-vehicles whose daily route sequence
is optimized by a daily travel planning service. Temporal occurring conflicts between appointments
are detected and resolved if possible. Furthermore, charging events between trips are scheduled. Un-
der the assumption that infrastructure services provide availability information of charging stations
and car parks, the most suitable charging locations for fulfilling the daily mobility tasks are identified
and booked by the planning service.

The basic scenario can be extended by mobility services, which no longer assume that a user is
strongly connected to its private vehicle. Car sharing (S1) services add a degree of freedom to the
planning service by making it possible to flexibly change the car between intermediate destinations.
Flexibility however comes at the additional effort of booking vehicles, which in order to gain user
acceptance, has to be made as easy as possible and has to be offered together with attractive pricing.

Another envisaged mobility service, namely carpooling (S2), not only focuses on flexibility and
vehicle usage but on customer’s total cost of ownership. Dynamic carpooling as a service is used for
organizing and executing shared trips with other people in a flexible way. At least two people are using
either a private or rented car for traveling together. This extension to the basic scenario significantly
improves the utilization of the vehicles.

Several multimodal extensions such as public transport may be included in the future in order to
enrich the approach and exploit its full potential. However, in the scope of the ASCENS project the
scenarios focus on the individual mobility level.

4.3 Requirements Analyses

A formulation of a simplified e-mobility process model is derived in order to describe the major
mobility scenarios (S0-S2). The model focuses on the composition of service components and the
temporal usage of resources.

In a first step, a petri net approach is taken to formalize the model. Using state space analysis,
characteristic properties are identified.

4.3.1 Formulation and Formalization of an e-Mobility Process Model

The e-mobility process model describes several users’ travel itineraries, multiple destinations and al-
ternative transportation scenarios. The model focuses on a detailed description of resource limitations
like a limited number of e-vehicles or charging stations. At the destination locations the availability
of car parks and charging stations is considered. Between destinations route alternatives are modeled,

ASCENS 29

D7.1: First Report on WP7 (Final) November 15, 2011

which are differing in time and energy consumption. Aiming at a simple but comprehensive analysis,
the temporal and energetic aspects of the routes only depend on driving behavior (comfort, eco and
sport mode) and route topology.

Figure 6: Formalization of the e-mobility scenario based on a hierarchical Petri net model.

Figure 6 shows the formal petri net representation of a real example scenario that considers four
destinations (Wolfsburg, Gifhorn, Braunschweig and Hannover), the road network between the des-
tinations and the processes which are taking place at the destination locations. The road network is
described by several transition framed sub nets (e.g. RNet15). It is assumed that the trips between
destinations contain a limited set of variants. Typically three alternative routes and three alternative
driving styles are considered, generating a set of maximally 9 variants. Each destination is represented
by a transition framed subnet (e.g. Hannover), which models both the vehicle charging process (e.g.
CarPark H) and user specific processes (e.g. User H) such as appointments. The charging stations
that are connected to the car parks support three different charging modes (normal, fast and ultra-fast
charging).

In the ASCENS framework the user and the vehicle are represented as Service Components.
Within the petri net notation, the user and the vehicle behavior are represented by tokens (active
elements in the process). A user token contains the user schedule (appointment location and appoint-
ment time window) and his driving behavior (eco, sport, comfortable). A vehicle token contains the
vehicle’s energy level and its available seats. The switching of a transition is composed of a set of
tokens. In the ASCENS notion this kind of operation represents the temporal orchestration of service
components into a service component ensemble. The different types of mobility scenarios that have
been introduced in section 4.1 can be modeled by using this kind of token representation. Taking the
car pooling service as an example, a group of users that travel together in one car can be described by
three user tokens and one vehicle token.

ASCENS 30

D7.1: First Report on WP7 (Final) November 15, 2011

Coordinating individual entities in the context of global system dynamics is the biggest challenge
in the individual vehicle traffic scenario. Centrally controlled traffic systems, e.g. rail or air traffic,
have common knowledge and more or less precisely defined schedules. In contrast to the latter in
the e-mobility scenario entities only have partial knowledge of the behavior of other entities. In the
face of a resource-constrained traffic system (e.g. limited set of charging stations) reliable journey
planning is enormously difficult. Planning services in future mobility approaches will support both a
meaningful information exchange between entities and an optimal usage of infrastructure resources.
The e-mobility process model is able to evaluate the quality and robustness of resource usage schemes
for different mobility service concepts (e.g. car sharing, carpooling).

4.3.2 Summary of Requirements

In the following Tables (Tables 4-6) the main features of future mobility planning services are depicted.
Table 4 focuses on the individual level of journey planning (S0). Table 5 discusses the requirements
of a car sharing service (S1). Table 6 presents the requirements of a carpooling service (S2). In
principle, the ASCENS framework is also capable of dealing with multimodal mobility. In favor of
a detailed vertical treatment, the horizontal scope of mobility scenarios is limited to the ones whose
core requirements are described in Tables 4-6.

Route calculation Calculating the time-energy optimal coupled route sequence of jour-
neys. The route sequence depends on the driver’s timetable, the driver’s
preferences and the vehicle status.

Exchange of traffic infor-
mation

Vehicles send current traffic information to a server where the informa-
tion is aggregated and distributed.

Reservation and booking
of charging stations and
car parks

Vehicles extract availability information of resources and use a reser-
vation service for the reservation and booking of charging stations and
parking lots

Expected behavior of the
solution

The vehicle planer supports the fulfillment of the daily mobility tasks.
Vehicles of the fleet have a significantly better performance than the
unplanned vehicles in fulfillment of the daily mobility task.

Table 4: Requirements of a trip/journey planning service for individual drivers using their own private
vehicles.

Dynamic fleet scheduling Calculating the fleet-optimal capacity utilization with respect to the e-
mobility specific items (e.g. charging stations)

Fleet vehicle distribution Distribution of fleet vehicles such that user flexibility and capacity uti-
lization for future rides are maximized

Expected behavior of the
solution

Compared to the individual vehicle planning approach, the car sharing
service reduces the average vehicle cost and improves on e-mobility
performance measures.

Table 5: Requirements of a car sharing service.

A simulation environment is developed in order to validate the concepts that have been developed
in ASCENS and the concepts are then applied to the scenarios found in Tables 4-6. The implementa-
tion of an ubiquitous e-infrastructure is far from being terminated. An e-traffic simulation can help to
evaluate future e-mobility scenarios. Table 7 gives an overview of the simulation requirements.

ASCENS 31

D7.1: First Report on WP7 (Final) November 15, 2011

Dynamic ride scheduling Calculating the optimal capacity utilization of the vehicle in the fleet
with respect to the e-mobility specific items (e.g. charging stations) and
the flexibility of the users (dynamic rescheduling)

Expected behavior of the
solution

Vehicle planer supports accounting of journeys with a significantly cost
reduction in comparison to individual vehicle usage scenario.

Table 6: Requirements of a carpooling service.

Traffic simulator with e-
infrastructure simulation

Hybrid simulation (microscopic/macroscopic) for a specific urban cen-
ter with a time scale of one day

Expected behavior of the
solution

In a realistic traffic simulation, planned vehicles (fleet) and unplanned
vehicles compete for traffic resources, such as parking lots and charging
stations.

Table 7: Requirements of an e-traffic simulation.

4.4 Approach and Design

Starting with a model based description of the mobility scenarios, the main influences on the plan-
ning process of individual e-mobility need to be analyzed. The planning, organizing and supervising
processes are arranged on different mobility planning levels depending on the degree of complexity.

Resulting functions are assigned to service components. Service Components assemble tempo-
rally in order to form service component ensembles which plan and support the execution of mobility
tasks.

The service component approach is evaluated by comparing the performance of planned vehicles
in relation to unplanned vehicles based on a realistic traffic scenario of an urban region. Planned
vehicles (fleet) and unplanned vehicles compete for traffic resources, such as parking lots and charging
stations.

Figure 7: Service Centric Car concept

4.4.1 Concept Service Centric Car

The main idea behind the concept is the description of all elements such as user, vehicles and in-
frastructure as a set of autonomously acting Service Components which are temporally connected in
Service Component Ensembles. Each Service Component is specified by goals, internal knowledge
about the environment and the scope of possible actions.

As it is shown in Figure 7, services are temporally connecting with the vehicle providing travel
relevant knowledge in order to fulfill the goals of the mobility task in the best possible way.

ASCENS 32

D7.1: First Report on WP7 (Final) November 15, 2011

4.4.2 Level of Mobility Planning

The degree of interdependency of mobility services and the temporal dimension of information suggest
a classification into four levels of mobility.

On the Component Level the basic functionalities of the different system components are mod-
eled. Typical mobility related functionalities are the estimation of the driver behavior and the corre-
sponding e-vehicle consumption. With respect to the vehicle environment, several traffic infrastructure
features such as traffic flow over time or availability of charging stations are considered.

On the next level of complexity, namely the Trip Level, component behavior is used for a specific
energy- and time-optimal route calculation from one destination to another.

On the Journey Level, sequences of trips are coupled to form a journey of an individual driver.
On the Journey Level, trip interdependencies are considered such as the influences of appointment
locations and the driving style on of charging events.

The Mobility Level represents the highest level of complexity. At this level, user and vehicle
groups (e.g. fleets) are coordinated and supervised. Examples of these kinds of mobility services are
fleet manager, car sharing or carpooling services.

4.4.3 Service Components in a User-Vehicle-Infrastructure Network

Vehicle Service Component: The Vehicle SC (see also Figure 8) represents the e-vehicle. Its goal is
to guarantee the best possible travel plan for the user, which is mainly reaching the destination in time
under consideration of the user preferences and the vehicles resource restrictions. Internal vehicle
states need to be monitored (e.g. state of charge), charging and parking events have to be scheduled,
optimal routes have to be calculated and temporal conflicts have to be resolved. Table 8 gives an
overview of the main properties. Vehicle service components are allocated to the trip level.

Goals - Guarantee that all vehicles reach their destinations;
- Guarantee that enough vehicles are available for fulfilling all mobility
tasks

Awareness issues 1: Vehicle states
2: Predicted journeys
3: Predicted energy consumption

Task Representation and supervision of vehicle behavior and status
Actions A: Monitor vehicle State of Charge

B: Calculate journeys
C: Calculate energy consumption
D: Solve Energy conflicts
E: Update charging events
F: Exchange journey schedule

Table 8: Properties of the Vehicle Service Component.

User Service Component: The User SC (see also Figure 8) negotiates the user’s (driver, rider)
objectives, which are based on the user preferences and knowledge. The knowledge contents are
typically appointment information, user driving profiles and climate comfort requirements. The user’s
mobility tasks are derived directly from the user input (vehicle human machine interface) or indirectly
by using historical data or interfacing the user’s daily scheduler. Table 9 contains the properties of the
User Service Component. User service components are assigned to the journey level.

Infrastructure Service Component: This kind of service component (see also Figure 8) pro-
vides and manages infrastructure resources, such as charging stations, car parks and their respective

ASCENS 33

D7.1: First Report on WP7 (Final) November 15, 2011

Goal - Guarantee that the user/passenger reaches his destination sequence in
time

Awareness issues 1: User schedule
2: Conflicts in schedule
3: User preferences

Task Representation and supervision of user interests
Actions A: Monitoring user schedule

B: Conflict solving in user schedule
C: Update journeys
D: Exchange appointments
E: Manage user preferences (driving profiles, . . .)

Table 9: Properties of the User Service Component.

availability. Table 10 shows the properties of the Infrastructure Service Component.

Goals - Guarantee that the infrastructure is available for fulfilling all mobility
tasks in the required time
- Optimize the capacity usage of the infrastructure

Task Providing and managing the infrastructure (charging stations, car parks,
road network and traffic)

Actions A: Traffic Forecast
B: Estimate parking lot availability
C: Estimate charging station availability
D: Booking of charging lots
E: Booking of parking lots

Awareness issues 1: Current and future traffic flow
2: Availability of charging stations/ parking lots
3: Booking status of charging/ parking lots

Table 10: Properties of the Infrastructure Service Component.

4.4.4 Composition of Service Component Ensembles

In Figure 8, a user journey is presented which is composed of 3 trips (A, B, C). It serves the purpose
of illustrating the temporal orchestration of service components and gives a feel for the real world
representation of service components and service component ensembles.

Person 1 (dark blue user SC) starts at position 1 and travels to destination 2 where he has sched-
uled an appointment. After the appointment has finished, person 1 proceeds to destination 3 where
he has to pick up a parcel that has to be delivered to destination 4. The user service component mon-
itors all temporal travel aspects of person 1. Based on the knowledge about the daily events, the SC
starts to organize the journey. Going from destination 1 to destination 2 the user service component
autonomously books an available vehicle from a car sharing provider (brown vehicle SC). The vehi-
cle’s range is not sufficient to complete the entire journey without recharging. The vehicle service
component books a charging station at a car park in the vicinity of destination 2 by requesting the
corresponding infrastructure service component (dark green infrastructure SC). At destination 3 the
time necessary for recharging the car would exceed the appointment duration of the user resulting in a
delay of the user’s journey. Within this time window alternative car sharing vehicles are not available.

ASCENS 34

D7.1: First Report on WP7 (Final) November 15, 2011

Figure 8: Concept of Service Component Ensemble composition.

The user service component checks alternative mobility services. A carpooling service provides a trip
from destination 3 to destination 4. The user service component negotiates the trip with the other
service components (vehicle and user service components). Together with the second person (light
blue user SC) person 1 travels to destination 4 in order to deliver the parcel and end his day.

The example describes a decentralized approach for organizing trips and journeys. The respon-
sibilities are divided between service components. The user service components are responsible for
reaching the destinations in time. Vehicle service components have to guarantee that the vehicles have
sufficient energy for reaching the destinations. Infrastructure service components have to guarantee
that the required infrastructure resources are available.

4.5 Future Work

The basic problem formulation and scenario definition, as provided by this deliverable, will be used
to synthesize a generic e-mobility model. This includes the formulation of individual SC models such
as a vehicle consumption model and SCE models. It needs to be investigated which of the nodes are
passive/active and how they are hierarchically structured. Moreover, SCEs need to be revisited with
respect to thematic, temporal and spatial coupling schemes.

Once the model is finalized it will be integrated into a traffic simulation in order to evaluate the
suitability of the ASCENS framework for electric mobility. The mobility services will be validated in
a realistic traffic simulation. Figure 9 shows the integration of the envisioned simulation framework
into the ASCENS context. Service components dynamically collect availability information of the
infrastructure components from the simulation (road throughput, charging stations, car parks, etc.) in
order to schedule daily journeys for the user. Service components orchestrate into service compo-
nent ensembles. Amongst others the simulation will be used to quantify the performance of planned
vehicles in relation to unplanned vehicles based on a realistic traffic scenario of an urban region.

ASCENS 35

D7.1: First Report on WP7 (Final) November 15, 2011

Figure 9: Validation of the e-mobility service component ensemble approach in a realistic traffic
simulation.

5 Conclusion

The report describes the work done within work package seven in the first project year. In collab-
oration with other projects work packages the systems requirements for the case studies have been
specified and the initial plans for modeling and development are set accordingly. At the beginning,
the focus has been at the separate problem space specification and individual system requirements
descriptions. After these separate activities, joint discussions took place where the common charac-
teristics of all three case studies were emphasized and extracted as generic features that represent each
case study. Following the sound software engineering principles of abstraction and decomposition,
a common ASCENS approach has been constructed modeling a complex system with ensembles of
service components which are awareness and knowledge rich. That further allows for more formal
description, high-level programming and rigorous analysis of system behavior and properties (adapta-
tion, optimization, autonomous and collective conducts, safety, liveness, etc). Further work is focused
on model synthesis and integration and simulation. It calls for close collaboration with other partners
and work packages.

With a special assignment to serve as a project integration place, this work package contribution
can be summarized in the following: (1) provision of the common understanding and a common
vocabulary for the problem space; (2) agreement on a common ASCENS approach to deal with the
autonomous and collective behavior; (3) initial agreement on ways how to collaborate with WP1,
WP2, WP3, WP4 and WP5 on language, awareness and autonomy models, knowledge representation,
adaptation issues and formal reasoning and verification and (4) a unique approach to the common tool
development, as defined in WP6, which should be later used as a general development platform. All
these points were harmonized with the results of WP8 that considers best practice in the domain.

ASCENS 36

D7.1: First Report on WP7 (Final) November 15, 2011

According to the planed description of work (as given in the Annex I), the work in the second
project year will concentrate on model syntheses (subtasks T1.2, T2.2 and T3.2) and integration and
simulation (subtasks T1.3, T2.3 and T3.3), keeping a tight collaboration across other work packages.

Model syntheses subtasks focus on further refinement of behavioral based architecture with dy-
namic and modifiable scenarios. In all three case studies, that means providing service components
and ensembles descriptions that feature both autonomic and collective behavior with adaptive capa-
bilities in terms of self (goal based) improvement and resource optimization. In case of ensembles of
robots that implies taking into account own restriction, collective goal and dynamic behavior of the
whole swarm that should optimally achieve the goal in spite possible resource and individual deficien-
cies. In a similar fashion, resource ensembles, as science clouds, should exercise self awareness of the
available resources in adapting the workload and throughput accordingly, performing dynamic self-
reconfiguration and load balancing. Finally, ensembles of e-vehicles form a novel model of the traffic
system that should allow for optimal use of resources (electricity, parking places, etc) while ensuring
the achievement of individual (reaching certain destination, despite energy problems) and collective
(keeping the whole system stable) goals.

Integration and syntheses subtasks should bring concrete deployment of the other work package
results in to the ASCENS case studies. In collaboration with WP1 further development of Service
Components Ensemble Language (SCEL) will be considered and deployed. In joint effort with WP2,
foundational models for autonomous Service Component Ensembles (SCEs) will be further considered
and used in concrete case studies. The cooperation with WP3 will focus on knowledge representation
and system self-awareness issues. The joint work with WP4 has already started [ea11] in defining
the ways how generic adaptation patterns, as defined within WP4, can be deployed in the case studies.
This work will be deepened in the coming period. Further achievements should be in forming a
common understanding of the extent of verification and formal proofs with WP5 and collaboration
with WP6 and WP8 on developing and deploying ASCENS generic tools and methods for service
component ensembles.

The work in the first project year has finished successfully fulfilling both integrative and working
goals of the caste study work package. The subtasks T1.1, T2.1 and T3.1 have been accomplished as
planned forming a sound bases for further work. The subtasks T2.1, T2.2 and T3.2 on Model synthesis
started on time and together with the subtasks (T1.3, T2.3 and T3.3) on integration and simulation
(that should start in the 19th project month) constitute major activities in the coming project period.
The work in the second project year will continue as planned and described in the Annex I (DoW)
document.

References

[BM09] Gerard Briscoe and Alexandros Marinos. Digital Ecosystems in the Clouds: Towards
Community Cloud Computing. CoRR, abs/0903.0694, 2009. informal publication.

[CK06] Stuart Cheshire and Marc Krochmal. DNS-Based Service Discovery. IETF Internet
Draft, August 2006.

[DKK+01] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica. Wide-
area cooperative storage with CFS. In SOSP ’01: Proceedings of the eighteenth ACM
symposium on Operating systems principles, pages 202–215, New York, NY, USA,
2001. ACM.

ASCENS 37

D7.1: First Report on WP7 (Final) November 15, 2011

[ea11] F. Zambonelli et. al. First Report on WP4: Catalogue of Patterns of Component- and
Ensemble-level Self-adaptation and Self-expression, and Requirements for Knowledge
Modelling. ASCENS Deliverable, November 2011.

[EH11] D. E. Eastlake and T. Hansen. US Secure Hash Algorithms (SHA and SHA-based
HMAC and HKDF). Internet RFC 6234, May 2011.

[FH05] P. Ford-Hutchinson. Securing FTP with TLS. Internet RFC 4217, October 2005.

[GJSB05] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java Language Specification,
The (3rd Edition). Addison-Wesley Professional, 2005.

[GWF+99] Y. Goland, E. Whitehead, A. Faizi, S. Carter, and D. Jensen. HTTP Extensions for
Distributed Authoring – WEBDAV. RFC 2518 (Proposed Standard), February 1999.
Obsoleted by RFC 4918.

[LN97] P. J. Leach and D. C. Naik. A Common Internet File System (CIFS/1.0) Protocol. 1997.

[LY99] Tim Lindholm and Frank Yellin. Java Virtual Machine Specification. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition, 1999.

[Mes09] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, Version
2.2. High Performance Computing Center Stuttgart (HLRS), September 2009.

[MM02] Petar Maymounkov and David Mazières. Kademlia: A Peer-to-Peer Information System
Based on the XOR Metric. In IPTPS, pages 53–65, 2002.

[MMGC02] A. Muthitacharoen, R. Morris, T.M. Gil, and B. Chen. Ivy: A Read/Write Peer-to-Peer
File System. In Proceedings of the 5th Symposium on Operating Systems Design and
Implementation, Boston, Massachusetts, USA, December 2002.

[PR85] Jon B. Postel and Joyce K. Reynolds. File Transfer Protocol (FTP). Internet RFC 959,
October 1985.

[RD01a] Antony Rowstron and Peter Druschel. Storage management and caching in PAST, a
large-scale, persistent peer-to-peer storage utility. In 18th ACM Symposium on Operat-
ing Systems Principles (SOSP’01), pages 188–201, October 2001.

[RD01b] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, Decentralized Object Lo-
cation, and Routing for Large-Scale Peer-to-Peer Systems. In Middleware ’01: Pro-
ceedings of the IFIP/ACM International Conference on Distributed Systems Platforms
Heidelberg, pages 329–350, London, UK, 2001. Springer-Verlag.

[RFH+01] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-
addressable network. In Proceedings of the 2001 conference on Applications, technolo-
gies, architectures, and protocols for computer communications, pages 161–172. ACM,
2001.

[SCR+03] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler, and
D. Noveck. Network File System (NFS) version 4 Protocol. RFC 3530 (Proposed
Standard), April 2003.

[SH99] P. Srisuresh and M. Holdrege. IP Network Address Translator (NAT) Terminology and
Considerations. Internet RFC 2663, August 1999.

ASCENS 38

D7.1: First Report on WP7 (Final) November 15, 2011

[SMLN+03] Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans Kaashoek,
Frank Dabek, and Hari Balakrishnan. Chord: a scalable peer-to-peer lookup protocol
for internet applications. IEEE/ACM Trans. Netw., 11:17–32, February 2003.

[UPn00] UPnP Forum. UPnP Device Architecture. http://www.upnp.org/download/
UPnPDA10_20000613.htm, 2000.

ASCENS 39

http://www.upnp.org/download/UPnPDA10_20000613.htm
http://www.upnp.org/download/UPnPDA10_20000613.htm

	Introduction
	Ensemble of Self-Aware Robots
	Introduction
	Domain
	Requirements Analysis
	Exploration
	Task allocation
	Collective transport
	Beyond Foraging

	Approach and Design
	Simulated Experiments
	Work on Real Robots
	Current Magnetic Gripper Prototype

	Outlook

	Resource Ensembles as Science Clouds
	Introduction
	Domain
	Requirements Analysis
	Distributed Storage
	Distributed Application Execution
	API and Programming Library
	Built on Autonomous Nodes
	Robustness under Unstable Conditions
	Adaption to Changing Environments
	Utilize IaaS Cloud
	Support for Heterogeneous Operating System Environments
	Zero-Configuration Experience
	Standards-based Interfaces
	Integration into OS
	Graphical User Interface
	Well-Documented APIs

	Approach and Design
	High-Level Overview
	Distributed Storage
	Distributed Application Execution

	Outlook

	Ensembles of Cooperative E-Vehicles
	Motivation
	Problem Statement

	Domain/Case Study Short Description
	Requirements Analyses
	Formulation and Formalization of an e-Mobility Process Model
	Summary of Requirements

	Approach and Design
	Concept Service Centric Car
	Level of Mobility Planning
	Service Components in a User-Vehicle-Infrastructure Network
	Composition of Service Component Ensembles

	Future Work

	Conclusion

