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Executive Summary

In the course of the first year of the ASCENS WP3, we studied modern approaches to knowledge
representation and knowledge management in intelligent systems. Well employed knowledge helps
such systems become aware of situations, recognize states and eventually respond to changes. The
great challenge is to decide on the mechanism such systems should use to implement and maintain
their knowledge. Our initial assumption is that knowledge representation can be regarded as a formal
specification of knowledge data reflecting a system’s understanding about itself and its surrounding
world. The initial research helped us conclude major requirements needed to be met by KnowLang,
a prospective specification language for knowledge representation in ASCENS systems. With Know-
Lang we provide a development environment that strives to answer fundamental questions related to
knowledge representation and reasoning in ASCENS. Knowledge in such systems is structured into
knowledge domains, each composed of domain ontology and a logical framework providing know-
ledge vocabulary and logical foundations used for reasoning. This document presents a “State of the
Art” on knowledge representation and awareness along with a formal approach to KnowLang in terms
of formal specification layers and parameterization. Moreover, important domain-specific issues are
discussed as well.
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Where is the wisdom we have lost in knowledge?
Where is the knowledge we have lost in information?
T.S. Eliot

1 Introduction

This famous quote of the American poet and Nobel laureate T.S. Eliot, cited in his poem “The Rock”
in 1934, has become inspiration for many scientists studying knowledge at different levels of depth
of meaning and concluding that the concept of intelligence is built upon four fundamental principles:
data, information, knowledge and wisdom. Similar to human intelligence, knowledge is the source of
intelligence in computer-based systems. In general, when we talk about knowledge, we mean facts,
understanding, experience and associations. In computer science, all these notions at their very basic
level are related to data, which takes the form of measures and notions. Here, the most intriguing ques-
tion is how to represent this data and what mechanisms and algorithms are needed to derive knowledge
from it. It should be noted that the knowledge of a system is represented in a way reflecting our un-
derstanding about the problem domain, and we implicitly choose a way to represent the phenomenon
we are studying. Our initial assumption is that knowledge representation can be regarded as a formal
specification of knowledge data reflecting the system’s understanding about itself and its surrounding
world. To specify a knowledge representation in ASCENS systems, we are currently developing a
special formal language termed KnowLang.

In this document, we report research results obtained in the course of the first year of the AS-
CENS WP3. The document consists of two parts. In the first part, we outline a “State of the Art”
on knowledge representation and awareness, along with a discussion on important issues related to
this challenging topic. In the second part, we present KnowLang in terms of specification tiers and
parameterization necessary to cover the specification of the ASCENS knowledge domains and reason-
ing primitives. A simple knowledge representation for the ASCENS robotics case study [BBR+11] is
presented as well.

Moreover, note that in the course of this initial year of research, we have published nine peer-
reviewed scientific papers, including papers published in the proceedings of international conferences
[VH11b, VHGN11, VH11c, VH11a, BCMZ11b, BCMZ11a], two journal papers [VH11d, Vas11a],
and a book chapter on “Knowledge Representation” of the new Encyclopedia of Software Engineering,
edited by P. A. Laplante [Vas11b].

2 Knowledge Representation and Awareness – State of the Art

Knowledge helps systems achieve awareness and autonomic behavior, where the more knowledgeable
systems are, the closer we get to real intelligent systems. Here, the term “knowledge” is widely used
in practice assuming rather vague distinctions among data, information, and intelligence. Along with
such a context, any discussion on knowledge should refer to those categories. By its nature as a
source of intelligence, knowledge allows system to recognize its states and helps to decide how to
respond to situations. Pejman Makhfi [Mak11] concludes that the concept of intelligence is built upon
four fundamental principles: data, information, knowledge, and wisdom. In this quartet, the basic
compound for intelligence is data. In general, data takes the form of measures and representations
of the internal and external worlds of a system, e.g., raw facts and numbers. Information is derived
from data by assigning meaning to it relevant to the domain of interest, e.g., data in a specific context.
Knowledge is a specific interpretation of information and wisdom is based on awareness, judgment
rules and principles of constructing new knowledge from existing one.
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2.1 Knowledge and Kinds of Knowledge

There are many kinds of knowledge that need to be considered for the development of intelligent
systems. Conceptually, knowledge can be regarded as a large complex aggregation [DR99] composed
of constituent parts representing knowledge of different kind. Each kind of knowledge may be used to
derive knowledge models of specific domains of interest. For example, in [DR99] the following kinds
of knowledge are considered:

• domain knowledge - refers to the application domain facts, theories, and heuristics;

• control knowledge - describes problem-solving strategies, functional models, etc.;

• explanatory knowledge - defines rules and explanations of the system’s reasoning process, as
well as the way they are generated;

• system knowledge - describes data contents and structure, pointers to the implementation of
useful algorithms needed to process both data and knowledge, etc. System knowledge also may
define user models and strategies for communication with users.

Moreover being considered as essential system and environment information, knowledge may be clas-
sified as 1) internal knowledge - knowledge about the system itself; and 2) external knowledge -
knowledge about the system environment. Another knowledge classification could consider a priori
knowledge (knowledge initially given to a system) and experience knowledge (knowledge gained from
analysis of tasks performed during the lifetime of a system). Therefore, it depends on the problem do-
main what kinds of knowledge may be considered and what knowledge models may be derived from
those kinds. For example, we may consider knowledge specific to: 1) the internal system component
structure and behavior; 2) the system-level structure and behavior; 3) the environment structure and
behavior; and 4) different situations where a system component or the system itself might end up in.
In addition, knowledge of components’ and system’s capabilities of communication and integration
with other systems might be considered as well.

2.2 Knowledge Representation Techniques

Different knowledge representation techniques might be used to represent different kinds of knowl-
edge and it is our responsibility to pick up ones that suit our needs the most. In general, to build a
knowledge model we need specific knowledge elements. The latter may be primitives such as frames,
rules, logical expressions, etc. Knowledge primitives might be combined together to represent more
complex knowledge elements. A knowledge model may classify knowledge elements by type and
group those of the same type into collections. Different approaches to knowledge modeling and
knowledge representation have been developed for intelligent systems. Note that it is important to
structure the knowledge in such a way that it can be effectively processed by an intelligent system
and perceived and updated by humans. The following subsections present some of the most popular
approaches to knowledge representation [Gor00].

2.2.1 Rules

Rules can be easily understood by humans. By its nature, rules structure knowledge in the form of
attribute-value pairs. In general, rules may take the following form [Gor00]:

if attribute A1 has value V1 and attribute A2 has value V2 then
set attribute A3 to value V3

end if
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The attribute part of a rule can consist of a series of clauses where the AND, and to a lesser degree
OR and NOT, logical connectives are possible. Sometimes, rules might have the form of “IF premise
THEN action”, where “premise” is Boolean and “action” is a series of statements. Note that although
similar, there are some important differences between the rules used for knowledge representation and
the conditional statements found in conventional programming languages:

• Rules are relatively independent of one another.

• Rules can be based on heuristics or experiential reasoning.

• Rules can accept uncertainty in the reasoning process.

• Conditional statements combine the knowledge and reasoning in one structure.

• Rules simply represent the knowledge, i.e., the inference mechanism or reasoning is separate.

Shortliffe successfully applied the rule-based approach to the development of systems applying human
knowledge and function at the level of a human expert [Sho76]. In this approach, attributes may
represent internal data and both system input and output (e.g., a response from the user). In such a
knowledge model, it is relatively easy to construct an engine that uses the set of rules in an automated
reasoning system. Rules may be dynamic, i.e., they can be archived and updated as necessary.

2.2.2 Frames

Frame-based knowledge models represent simple concepts via a collection of information and associ-
ated actions. Often, the notion of frame is related to data structure containing typical knowledge about
a concept or physical entity - an object, a person, etc. An example of a simple representation of a per-
son with the frame-based approach is the following [Gor00]:

Frame: Ellery Stone
Specialization of: Frame Person
Date of Birth: 30:04:62
Sex: Male
Nationality: British
Home Town: St. Helens
Occupation: Tailor
Health: (Consult Medical system)

Frames represent knowledge about real-world entities by combining information, calls to information
derivation functions and output assignments. A frame contains both descriptions of attributes and
procedural details. As shown in the simple frame above, some of the slots have associated values
and one slot refers to another system that must be used to find a value. A frame can encompass both
semantic and procedural knowledge. In a frame we recognize two key elements: 1) slots - sets of
attributes for specific entity that is described; and 2) facets - extended knowledge about an attribute in
a frame. One of the main advantages of frames is the ability to include special demons to compute slot
values. A demon can run a function that computes the value of a slot on demand.

2.2.3 Semantic Networks, Concept maps and Bayesian networks

The third of the basic approaches to knowledge representation is termed semantic networks [Sow92].
The idea behind semantic networks is that knowledge is often best understood as a set of concepts
that are related to one another. Basically, a semantic network is a directed graph consisting of nodes
(or vertices) connected with edges (or arcs). Nodes represent concepts and edges represent semantic
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relations between those concepts. There is no standard set of relations between concepts used in
semantic networks, but the following relations are very common:

• instance: X is an instance of Y if X is a specific example of the general concept Y;
Example: Object A is an instance of Class B

• isa: X isa Y if X is a subset of the more general concept Y;
Example: sparrow isa bird

• haspart: X haspart Y if the concept Y is a part of the concept X;
Example: sparrow haspart tail

Inheritance is a key notion in semantic networks and can be represented naturally by isa relations.
Essentially, a computer-based semantic network uses metadata (data describing data) to represent the
meaning of different information. Intelligent systems that recognize the meaning of information (for
example, data stored in a warehouse) become immeasurably more intelligent. Extensible Markup Lan-
guage (XML) [W3C11] and Resource Description Framework (RDF) [W3C10] are common content-
management schemes that support semantic networks. Concept maps are similar to semantic networks,
but they label the links between nodes in very different ways. They are considered more powerful than
semantic networks because they can represent fairly complex concepts, such as a hierarchy of concepts
with each node constituting a separate concept. Concept maps are useful when designers want to use
an intelligent system to adopt a constructivist view of learning.

A special class of semantic networks is the so-called Bayesian networks [Nea03] where implica-
tions are used as the primary relation for connecting nodes. A Bayesian network is a directed acyclic
graph where the nodes are variables labeled with local probability distributions on the possible node
values and edges are used to assert statistical dependency relations between variables. Bayesian net-
works allow for probabilistic reasoning (see Section 2.2.6). Although useful, they are notoriously
difficult to build accurately and efficiently, which has somewhat limited their application to real world
problems.

2.2.4 Ontologies

Ontologies inherit the basic concepts provided by rules, frames, semantic networks, and concept maps.
They explicitly represent domain concepts, objects, and the relationships among those concepts and
objects to form the basic structure around which knowledge can be built [ST99]. The main idea is to
establish standard models, taxonomies, vocabularies, and domain terminology and use them to develop
appropriate knowledge and reasoning models. An ontology consists of hierarchies of concepts, for
example, an “objects” concept tree or a “relations” concept tree. Each concept has properties, which
can be regarded as a frame. The relationships among the concepts form semantic networks. Additional
rules and constraints might impose restrictions on the relationships or define true statements in the
ontology (facts). Figure 1 shows an ontology that represents the concept of a coffee machine. CM has
properties such as height, weight, coffee bean hopper, touch screen, container, and so on. A semantic
network defines the relationships between CM and the rest of the concepts in the ontology and includes
the following properties: CM requires E (electricity), CM requires A (action), CM requires C (coffee),
CM requires W (water), and CM makes CD (coffee drink). Some rules expressed with the ontology
concepts add new knowledge about the coffee machine.

In general, to build ontology, a special ontology language is required. For example, the Web
Ontology Language (OWL) [MH04] is such a formal language that evolved out of Description Logic
[BN03] and is the result of research efforts aiming at providing a knowledge representation language
for the semantic web. By using OWL, we build an ontology as an explicit and formal specification
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Figure 1: Knowledge Representation Techniques

of a conceptualization that eventually can be compared with a TBox (“T” states for “template” or
“terminology”) in Description Logic, i.e., it provides a vocabulary of concept definitions and defines
relationships among these concepts. The concepts in turn represent knowledge about specific objects
in the world.

2.2.5 Logic

To achieve the precise semantics necessary for computational purposes, intelligent system designers
often use logic to formalize knowledge representation (KR). Moreover, logic is relevant to reasoning
(inferring new knowledge from existing knowledge), which in turn is relevant to entailment and de-
duction [BL04]. The most prominent logical formalism used for KR is first-order logic [BL04]. FOL
helps to 1) describe a knowledge domain as consisting of objects; and 2) construct logical formulas
around those objects. Similar to semantic networks, statements in natural language can be expressed
with logical formulas describing facts about objects using predicate and function symbols. Extensions
of FOL such as second-order logic (SOL) and temporal logics strive to improve the logical formal-
ism by increasing expressiveness. The problem with FOL is that it can quantify over individuals, but
not over properties and time - we can thus specify a property’s individual components, but not an
individual’s properties. With SOL, for example, we can axiomatize the sentence “component A and
component B have at least one property in common, such as sharing at least one interface”, which
we can’t do with FOL. Temporal logics makes it possible to model knowledge either as linear time
or branching time temporal models, and can be used to describe and formalize complex reasoning
patterns prescribing inference steps operating over temporal knowledge models. Another prominent
formalism is description logic (DL) [BN03], which evolved from semantic networks. With DL, we
represent an application domain’s knowledge by first defining relevant concepts in TBox and then us-
ing ABox to specify properties of objects. While less expressive than FOL, DL has a more compact
syntax and better computational characteristics.
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2.2.6 Probability and Statistics

Decision-making is a complex process that is often based on more than logical conclusions. Proba-
bility and statistics may provide for the so-called probabilistic and statistical reasoning intended to
capture uncertain knowledge in which additive probabilities are used to represent degrees of belief of
rational agents in the truth of statements. For example, the purpose of a statistical inference might be
to draw conclusions about a population based on data obtained from a sample of that population. Prob-
ability theory and Bayes’ theorem [RB11] lay the basis for such reasoning where Bayesian networks
[Nea03] are used to represent belief probability distributions, which actually summarize a potentially
infinite set of possible circumstances. The key point is that nodes in a Bayesian network have direct
influence on other nodes and given values for some nodes, it is possible to infer the probability dis-
tribution for values of other nodes. How a node influences another node is defined by the conditional
probability for the nodes usually based on past experience.

For more information on the knowledge representation mechanisms and techniques, please, refer to
our publications [Vas11b, VH11d, VH11b].

2.3 Awareness

Awareness is a concept playing a crucial role in intelligent systems. Conceptually, awareness is a
product of knowledge representation, knowledge processing and monitoring. Autonomic computing
[KC03], one of the modern approaches to knowledge systems, considers two kinds of awareness:

• self-awareness - a system has detailed knowledge about its own entities, current states, capacity
and capabilities, physical connections and relations with other systems in its environment;

• context-awareness - a system knows how to negotiate, communicate and interact with environ-
mental systems and how to anticipate environmental system states, situations and changes.

A key success factor for a knowledge system is to employ its knowledge to become an aware system.
Such a system must be able to sense and analyze its components and the environment where it operates
in. A primary task should be determining the state of each system component and the status of the
service-level objectives. Thus, an aware system should be able to notice change and understand the
implications of that change. Here, both self-monitoring and monitoring of the environment appear
to be one of the key concepts in awareness. A possible approach will be to develop a monitoring
system based on notification events. Moreover, an aware system should be able to apply both pattern
analysis and pattern recognition to determine normal and abnormal states. Here, knowledge might be
expressed in the form of operational patterns, e.g., performance, resource usage, etc. Figure 2 depicts

Figure 2: Generic Model for Awareness in Intelligent Systems
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a generic model for system awareness based on structured knowledge. As shown, at the core of the
awareness model is structured knowledge. This is the knowledge a system maintains in order to be
aware of changes taking place in its internal world and in the environment (context knowledge model).
Note that system components must have its internal knowledge and possibly have knowledge about
the system as a whole and/or the environment. Moreover, a system must maintain special situational
knowledge eventually expressed as situational knowledge patterns describing special situations that
must be considered by that system. Such situations are relevant changes in the environment or in the
system itself. A situation could be a joint situation where changes in different domains of interest are
considered. For example, a change in the internal system’s structure and a change in the environment
might be considered as a situation. The model for system awareness comprises a special awareness
control loop where we observe four distinct functions (see Figure 2):

• monitoring - collects, aggregates, filters, manages and reports internal and external details (e.g.,
metrics and topologies) gathered from the internal entities of a system and from its context;

• recognition - uses knowledge models to recognize changes in the system or in the context;

• assessment - determines entities (internal or external) of interest, generates hypotheses about
situations involving these entities, and recognizes situational patterns;

• learning - generates new situational patterns and maintains history of property changes.

Therefore, in order to monitor and collect information consistently and to recognize changes, a system
must have a well-structured uniform knowledge model of itself and eventually such of its context.
Moreover, it must have situational knowledge patterns that help the system recognize situations. The
four functions forming the awareness control loop help a system be aware of internal changes (self-
awareness), of external changes (context awareness) and of situations (situational awareness). The
awareness control loop might be developed as a Bayesian network [Nea03] component to provide the
adaptive functionality and learning the effects of actions in the awareness mechanism.

2.4 Discussion

2.4.1 Encoded Knowledge versus Represented Knowledge

When working on knowledge representation, it is necessary to consider the fact that most of the time
the system under development is not 100% knowledge-centered. This means that software engineers
and developers may design and encode a big part of the “a priory” knowledge (knowledge given to
the system before the latter actually runs) in the implemented program classes and routines. In such
a case, the knowledge-represented pieces of knowledge (e.g., concepts, relations, rules, etc.) may
complement the knowledge codified into those program classes and routines. For example, rules could
be based on classes and methods and a substantial concern about the rules organization is how to relate
the knowledge expressed with rules to implemented methods and functions. A possible solution is to
map concepts and objects to program classes and objects respectively and design rules working on the
input (parameters, pre-conditions) and output (results, post-conditions) of implemented methods.

2.4.2 Completeness and Consistency

It should be noted also that an essential assumption when building knowledge models is that such
cannot provide a complete picture of the domain of interest. The fundamental reasons are that do-
main objects often present real things that cannot be described by a finite set of symbolic structures.
Moreover, such objects do not exist in isolation, but are included in unlimited sets of encompassing
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contexts. Therefore, incompleteness shall be considered when developing knowledge models and also
the fact that an intelligent system must rely on reasoning to infer missing knowledge.

Another aspect of the knowledge completeness is related to the way a system assumes its opera-
tional world. In this regard, we may have:

• Closed World Assumption (CWA) - assumes a complete and closed model of the world;

• Open World Assumption (OWA) - assumes an incomplete and open model of the world.

Whereas the CWA strategy assumes that unless an atomic sentence is known to be true, it can be as-
sumed to be false, the OWA strategy assumes that any information not explicitly specified (or such
that cannot be derived from the known data) is considered unknown. Note that FOL imposes CWA se-
mantics and Description Logics impose OWA semantics. The following example shows the difference
between these two assumptions:

Given: Gloria drives Mazda.
Question: Does Gloria drive a red Mazda?
Answer: (CWA) No.

(OWA) Unknown. (The Gloria’s Mazda could be red.)
Although more restrictive, CWA provides for avoiding inconsistency in knowledge - if consistent,
knowledge cannot become inconsistent, because CWA does not allow adding new facts, which may
lead to inconsistency. Note that knowledge consistency is important for efficient reasoning but is
not mandatory in knowledge representation. Other approaches helping a system preserve knowledge
consistency are “no negation” and the use of consistency rules and constraints. For example, rules may
imply true facts or special relations between the concepts and objects or impose a special semantics for
such relations. As part of the knowledge representation, rules may provide special constraints ensuring
that the knowledge will be correctly processed by the inferential engines. There could be constraints
for knowledge acquisition, knowledge retrieval, knowledge update and knowledge inference.

2.4.3 Knowledge Models

Conceptually, intelligent system knowledge should be represented in a way suitable for machine learn-
ing and data mining. Therefore, data must be structured (or classified) to become a source of knowl-
edge. In general, to represent knowledge, we may consider special knowledge models for the single
system component (component knowledge model), the system as a whole (system knowledge model)
and the operational environment (context knowledge model). In addition, we also may consider spe-
cific situations, which may be expressed as special situational knowledge patterns. The latter will help
a system recognize situations it has been before and eventually detect unknown ones. The following
is a brief rational giving some hints about possible knowledge models and techniques we should con-
sider.

There may be different knowledge models, depending on the complexity of the knowledge to be
represented. For instance, single components are much less complex entities than the system hosting
those components. Thus, it is more reasonable to model knowledge about components (component
knowledge model) in much more detail than for the system as a whole. Also, because of the archi-
tecture of the system in question, it is reasonable to assume that each system component has accurate
knowledge of its own situation, while the situation in which a system is would be less certain. For
these reasons, we may consider modeling local knowledge of each system component (behavior, prop-
erties and policies) with deterministic models such as Finite State Machines or Logic Formulae. These
models offer methods to accurately determine the current situation of a system component. On the
other hand, knowledge about the system or the environment may be encoded into probabilistic models
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such as Bayesian Networks, Neural Network or Support Vector Machines. Although less accurate,
these models offer practical ways for a system component to determine what is the most likely current
situation of the system it belongs to. Moreover, probabilistic models are suitable for evolution and
adaptation in case unplanned situations arise. This is of great interest when the system is facing an
unknown situation. The learning capabilities of probabilistic models make it then possible to update
knowledge representation with new situations. The information provided by the system component
knowledge models will help each system component identify the current situation (expressed in the
form of situational knowledge patterns) in which a system is.

2.4.4 Reasoning

When a knowledge system needs to decide on a course of action and there is no explicit knowledge
about this, the system must reason. Basically, reasoning is how a system uses its knowledge to figure
out what it needs to know from what is already known. There are two main categories of reason-
ing: 1) monotonic reasoning - new facts can only produce additional beliefs; and 2) non-monotonic
reasoning - new facts will sometimes invalidate previous beliefs. Computations over the represented
knowledge are done by inferential engines that act to produce new knowledge. Usually, the inferential
engines are FOL-based or DL-based. The FOL-based inferential engines (e.g., VAMPIRE, SPASS,
E-Theorem Prover, etc.) use algorithms from automated deduction dedicated to FOL, such as theo-
rem proving and model building. Theorem proving can help in finding contradictions or checking for
new information. Finite model building can be seen as a complementary inference task to theorem
proving, and it often makes sense to use both in parallel. The problem with the FOL-based inference
is that the logical entailment for FOL is semi-decidable, which means that if the desired conclusion
follows from the premises then eventually resolution refutation will find a contradiction. As a result,
queries often unavoidably do not terminate. Inference engines based on DL (e.g., Racer, DLDB, etc.)
are extremely powerful when reasoning about taxonomic knowledge, since they can discover hidden
subsumption relationships amongst classes. However, their expressive power is restricted in order to
reduce the computational complexity and to guarantee the decidability (on DL are decidable) of their
deductive algorithms. Consequently, this restriction prevents taxonomic reasoning from being widely
applicable to heterogeneous domains (e.g. integer and rational numbers, strings) in practice. It may
be considered that ontologies, frames, rules and semantic networks are intended to present distinct
pieces of knowledge that are worth being differently represented. Note that an important distinction
is between ontological and factual knowledge. Whereas the first is related to the general categories
(presented as concepts) and important objects in the domain of interest, the second makes assertions
about some specific concepts and objects. This is essential for reasoning based on DL. In addition, the
rules and constraints are part of the so-called explicit knowledge suitable for FOL-based reasoning.

2.5 Experimenting with Knowledge Representation and Awareness

To experience the power and expressiveness of the ontology approach to knowledge representation,
we created simple robot ontology specified in the Web-Ontology Language (OWL) [MH04] by using
the OWL Protege editor [Sta11]. Next, we wrote simple inference algorithms in Prolog where we used
the so-called SWI Prolog [SWI11], a Prolog implementation licensed under LGPL, and two Prolog
libraries for semantic web data, namely Semweb Library [Jan11] and Thea OWL library [VWM09],
as basic mechanisms.

In this exercise, we used the inference engine of Prolog, especially its backtracking mechanism,
to answer queries and search for assignments of variables that fulfill certain constraints. For example,
if we search for all sensors of a robot we can formulate two constraints (being component of the robot
and being a sensor) in Prolog and the backtracking mechanism delivers all individuals that fulfill these
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constraints. All queries were presented in natural language and as Prolog predicates, e.g., queries such
as “Can robot R execute action A?”. As Prolog is a logical programming language it fits nicely with
our OWL modeling which is based on DL. There are minor differences, most notably the open world
assumption in DL vs. the closed world assumption in Prolog.

Situational awareness (see Section 2.3) is a key feature in pervasive systems, such as mobile ap-
plications and services, mobile robots, smart buildings, e-vehicles and adaptive traffic management,
etc. Aside from the ASCENS project, due to its increasing importance, a large body of recent research
in pervasive computing is focusing on situation recognition. The emphasis is on algorithms and tools
to identify specific situational aspects such as location, current activity, health status and daily routines
from sensor data. A principle goal is to analyze and classify the raw streams of data produced by avail-
able sensors, e.g., assign compact and expressive labels to represent a situation. Some experiments
targeting awareness were done in the course of the first year of WP3:

• We experimented with the design and implementation of different sources of environmental
awareness [BCMZ11b, BCMZ11a]. In particular, sensors enabling the recognition of user ac-
tivities based of accelerometer values and locations based on inferences on GPS signal features.

• We experimented with the design and implementation of a vision-based situation sensor [BLZ12].
Our work is based on an innovative approach that relies on decomposing an image to its indi-
vidual entities and then reconstructing a comprehensive classification out of them by using the
so-called ConceptNet ontology [Com11].

• We experimented with a framework based on commonsense knowledge 1 to integrate and use
sensors for multimodal situation identification, so as to improve overall classification accuracy
and deal with missing classification label [BCMZ11b, BCMZ11a, BLZ12].

3 KnowLang – Knowledge Representation Language for ASCENS

Knowledge representation can be regarded as a specification of the system’s understanding about itself
and that of its surrounding world. Thus, a knowledge representation model has its syntax and seman-
tics (facts presenting the knowledge meaning) where both are provided by a special language we use
to write knowledge representation. To avoid ambiguity in knowledge facts, such a language should be
a formal language that provides mechanisms for verifying the consistency and eventually the correct-
ness of the knowledge representation. In this section, we present an overview of the requirements and
an initial model for such a formal language termed KnowLang, a language we are currently developing
in the course of the ASCENS project.

3.1 KnowLang Requirements

Our initial study of the problem domain, where we emphasized the ASCENS case studies, has con-
cluded that awareness of a SC is about entailing the possession of a complete self-model that encom-
passes the SC’s functional features, execution history, current situation, activities, abilities, services,
goals, policies, intentions, etc. In addition, a SC may have partial knowledge of the ensemble it is a
member of in terms of common goals, ensemble states, communication mechanisms and interfaces,
other SCs, etc. Finally, a SC should have a rather general understanding of its operational environment
in terms of concepts, objects, events or situations. All these awareness aspects should be empowered

1Commonsense knowledge is the routine knowledge we use in our daily life activities.
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by structured knowledge and autonomic reasoning and goal-directed (or utility-directed) planning abil-
ities. Knowledge should be structured into different knowledge domains of interest providing together
a complete knowledge model for ASCENS systems.

3.1.1 Knowledge Specification and Storing

In our systematic approach to the problem of knowledge representation, we assume that knowledge
representation can be regarded as a formal specification of knowledge data reflecting the system’s
understanding about itself and its surrounding world. The inherited complexity, stemming from the
autonomic [VH10, KC03] nature of ASCENS (ASCENS is a class of autonomic systems), necessitates
the use of a specification model where knowledge can be presented at different levels of depth of
meaning. Thus, KnowLang shall impose an ASSL-like multi-tier specification model 2 [Vas08] where
we specify a knowledge model at different knowledge tiers nesting other tiers and so on representing
the different levels of depth of meaning. In general, KnowLang should provide constructs not only for
the specification of the ASCENS knowledge models, but also constructs for special Knowledge Base
Operators (KB Operators) and Inference Primitives. The KB Operators should provide for a means
for storing, updating and retrieval/querying knowledge. To physically store the specified knowledge
models, we envision a database-like structure termed ASCENS Knowledge Base (AKB). The storage
mechanism is going to be provided by the tuple-space mechanism of the KLAIM language [RDNP98],
the basis for the SCEL language. Thus, the KB Operators should cope with the KLAIM mechanisms
for reading and writing data from and to a KLAIM(SCEL) tuple space. In addition, the Inference
Primitives should provide mechanisms for reasoning and knowledge inference. Note that KnowLang
should provide syntax and semantics rules for each specification tier.

3.1.2 KnowLang Formalism

It is difficult to determine the formalism of KnowLang at this stage of the work, but an initial require-
ment is that it should be a declarative language. Going further, we can conclude that the language
should be expressive enough to help developers benefit from the knowledge-expressive power of the
popular knowledge-representation techniques such as ontologies, concept maps, rules, etc. Consider-
ing the current logics used to describe knowledge models (see Section 2.2.5), the underlying formal-
ism for the ontology part should be derived from DL and for the rules, from FOL or its derivations.
Thus, the Inference Primitives should cope with the DL and FOL inferential algorithms. For example,
formal semantics and reasoning involving ontologies expressed with KnowLang might be achieved by
mapping an ontology to DL and using the established and well-studied inference procedures for DL
to implement reasoning.

3.1.3 Support to Ontologies

KnowLang should support the specification of ontologies, i.e., it should provide efficient constructs
for encoding the ASCENS ontologies. The semantics for this part of KnowLang should be DL-based
and open-world. Note that DL imposes open-world semantics, which means that if a statement can
neither be proven to be true or false it is not judged as false, but as unknown. In general, ontologies
provide a form of explicit representation of domain concepts and the relationships between those con-
cepts to form the basic structure around which knowledge can be built. The main idea is to establish
standard models, taxonomies, vocabularies and domain terminology and use those to develop appro-
priate knowledge and reasoning models. Any ontology is a formal and declarative representation of a

2The ASSL formal notation is based on a specification model exposed over hierarchically organized formalization tiers.
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knowledge model of some topic or subject area. It provides concepts to be used for expressing knowl-
edge in that subject area. This knowledge encompasses: types of entities, attributes and properties,
relations and functions, as well as various constraints.

3.1.4 Logical Framework

A domain-specific ontology gives a formal and declarative representation of a knowledge domain
in terms of explicitly described domain concepts, individuals and the relationships between those
concepts/individuals. To help developers realize the explicit representation of particular and general
factual knowledge, in terms of predicates, names, connectives, quantifiers and identity, KnowLang
must provide a sort of logical framework assisting in the specification of such knowledge primitives.
Such a logical framework should provide computational structures, additional to the domain ontology
that basically determine the logical foundations helping a SC reason and infer knowledge. A logical
framework should support the specification of facts, rules and constraints - all logically founded and
built with ontology terms

3.1.5 Distributed Reasoning

Ideally, an ASCENS system must support distributed reasoning, and thus, KnowLang should pro-
vide mechanisms for that. Although, the main reasoning mechanisms will be implied by the Logical
Framework and the Inference Primitives, specification of global properties such as actions, events and
situations are also intended to provide support for distributed reasoning at the ontology level.

3.1.6 Support to Events and Situations

An important requirement for KnowLang is the need of constructs that give some means for associ-
ating event/situation terms with event/situation-describing sentences, so that the described events and
situations can be referred to, temporally modified, causally related, or otherwise qualified. The formal
semantics for KnowLang situations might be borrowed from the so-called Situation Calculus [Sch90]
or eventually a probabilistic extension of the same [MPP+01]. The Situation Calculus is a logic for-
malism based on SOL and designed for representing dynamic domains. It also, is very appropriate
for various sorts of reasoning, including planning. Basically, Situation Calculus represents changing
scenarios as a set of SOL formulae where the basic elements are: 1) actions that can be performed in
the world; 2) fluents that describe the state of the world; and 3) situations that represent a history of
action occurrences. The Situation Calculus has shown to be more expressive than it had been initially
assumed with respect to concurrent, extended, and temporally qualified actions as well as causation.
Another formalism that is appropriate for KnowLang situations is Event Calculus [KS86].

3.1.7 Support to Policies

To specify the behavior of a SC in important situations, KnowLang shall provide constructs for spec-
ifying special Policies. The formal semantics for KnowLang Policies could be borrowed from the
semantics of self-managing policies specified in ASSL (Autonomic System Specification Language)
[Vas08]. The ASSL Policies specify special self-managing behavior driven by special fluents and
actions. A fluent presents a state where the system gets into when special conditions are met. Such
conditions are driven by events. If a SC gets into a fluent then the policy behind that fluent is consid-
ered active and specific actions are executed.
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3.1.8 Experience

KnowLang shall provide appropriate mechanisms and constructs to store and query SC’s experience
of actions’ executions. This will help a SC be aware of the execution history of the actions to be
executed and eventually compute the success probability for those actions. In that way, a SC may
learn (infer new knowledge) not to execute actions that traditionally have low success rate. Experi-
ence plays a central role in the learning process. For example, an experience can be observed while
the robot is acting and then eventually abstracted and stored in the ASCENS Knowledge Base (AKB).
Thus, KnowLang should provide additional constructs allowing for experience abstraction.

In [VHGN11], we discuss some additional requirements related to the swarm robotics case study.
Those requirements are case-study specific and show a deductive reasoning that should be performed
when we approach the problem of knowledge representation for a particular system.

3.2 ASCENS Knowledge Models

The initial research results based on our awareness study concluded that a SC should have structured
knowledge addressing the SC’s structure and behavior, the SC Ensemble (SCE) structure and behavior,
the environment entities and behavior and situations where that SC or the entire SCE might end up in.
Based on these knowledge requirements, we defined four knowledge domains:

• SC knowledge - knowledge about internal configuration, resource usage, content, behavior,
services, goals, communication ports, actions, events, metrics, etc.;

• SCE knowledge - knowledge about the whole system, e.g., architecture topology, structure,
system-level goals and services, behavior, communication links, public interfaces, system-level
events, actions, etc.;

• environment knowledge - parameters and properties of the operational environment, e.g., exter-
nal systems, concepts, objects, external communication interfaces, integration with other sys-
tems, etc.;

• situational knowledge - specific situations, involving one or more SCs and eventually the envi-
ronment.

These knowledge domains are going to be represented by four distinct knowledge corpuses – SC
Knowledge Corpus, SCE Knowledge Corpus, Environment Knowledge Corpus and Situational Knowl-
edge Corpus. Each knowledge corpus is structured into a special domain-specific ontology and a log-
ical framework. The domain-specific ontology gives a formal and declarative representation of the
knowledge domain in terms of explicitly described domain concepts, individuals (or objects) and the
relationships between those concepts/individuals. The logical framework helps to realize the explicit
representation of particular and general factual knowledge, in terms of predicates, names, connec-
tives, quantifiers, and identity. The logical framework provides additional computational structures to
determine the logical foundations helping a SC reason and infer knowledge. All four ASCENS knowl-
edge corpuses together form the ASCENS Knowledge Base (AKB). The AKB is a sort of knowledge
database where knowledge is stored, retrieved and updated. In addition to the knowledge corpuses,
the AKB implies a knowledge-operating mechanism providing for knowledge storing, updating and
retrieval/querying. Ideally, we can think of an AKB as a black box whose interface consists of two
methods called TELL and ASK. TELL is used to add new sentences to the knowledge base and ASK
can be used to query information. Both methods may involve knowledge inference, which requires that
the AKB is equipped with a special inference engine (or multiple, co-existing inference engines) that
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reasons about the information in the AKB for the ultimate purpose of formulating new conclusions,
i.e., inferring new knowledge.

3.3 KnowLang Specification Model

We envision KnowLang as a formal language providing a comprehensive specification model address-
ing all the aspects of an ASCENS Knowledge Corpus and providing formalism sufficient to specify
the AKB operators and theories helping the AKB inference mechanism. The complexity of the prob-
lem necessitates the use of a specification model where knowledge can be presented at different levels
of depth of meaning. Thus, KnowLang imposes a multi-tier specification model (see Figure 3), where
we specify the ASCENS knowledge corpuses, KB operators and inference primitives at different hi-
erarchically organized knowledge tiers.

Figure 3: KnowLang Multi-Tier Specification Model

Definitions 1 through 49 (see the definitions following Figure 3) outline a formal representation
of the KnowLang specification model. As shown in Definition 1, an ASCENS Knowledge Base is a
tuple of three main knowledge components - knowledge corpus (Kc), KB operators (Op) and infer-
ence primitives (Ip). A Kc is a tuple of three knowledge components - ontologies (O), contexts (Cx)
and logical framework (Lf ) (see Definition 2).

FORMAL REPRESENTATION OF KNOWLANG

Def. 1 Kb = {Kc,Op, Ip} (ASCENS Knowledge Base)

Def. 2 Kc = {O,Cx,Lf} (ASCENS Knowledge Corpus)
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ASCENS ONTOLOGIES

Def. 3 O = {osc, osce, oenv, osi} (ASCENS Ontologies)

Def. 4 o = {Cm,Ct,Ot,R}, o ∈ O (ASCENS Ontology)

Def. 5 Cm = {cm0, cm1, ...., cmn} (Meta-concepts)

Def. 6 cm = {[cx], i}, i ∈ Icx (Meta-concept, cx - Context, i - Interpretation)

Further, an ASCENS ontology is composed of hierarchically organized sets of meta-concepts
(Cm), concept trees (Ct), object trees (Ot) and relations (R) (see Definition 4). Meta-concepts
(Cm) provide a context-oriented interpretation (i) (see Definition 6) of concepts. Concept trees (Ct)
consist of semantically related concepts (C) and/or explicit concepts (Ce). Every concept tree (ct)
has a root concept (tr) because the architecture ultimately must reference a single concept that is the
connection point to concepts that are outside the concept tree. A root concept may optionally inherit
a meta-concept, which is denoted [tr � cm] (see Definition 8). The square brackets [] state for
“optional” and � is “inherits” relation. Every concept has a set of properties (P ) and optional sets of
functionalities (F ), parent concepts (Pr) and children concepts (Ch) (see Definition 10).

Def. 7 Ct = {ct0, ct1, ...., ctn} (Concept Trees)

Def. 8 ct = {tr, C, [Ce]} (Concept Tree)

tr ∈ (C ∪ Ce), [tr � cm] (tr - Tree Root)

Def. 9 C = c0, c1, ., cn (Concepts)

Def. 10 c = {P, [F ], [Pr], [Ch]} (Concept)

Pr ⊂ (C ∪ Ce), c � Pr (Pr - Parents)
Ch ⊂ (C ∪ Ce), Ch � c (Ch - Children)

Def. 11 P = {p0, p1, ...., pn} (Properties)

Def. 12 F = {f0, f1, ...., fn} (Functionalities)

Explicit concepts are concepts that must be presented in the knowledge representation of an AS-
CENS system. Explicit concepts are mainly intended to support 1) the autonomic behavior of the SCs;
and 2) distributed reasoning and knowledge sharing among the SCs. These concepts might be policies
(Π), events (E), actions (A), situations (Si) and groups (Gr) (see Definition 13).

Def. 13 Ce = {Π, E,A, Si,Gr} (Explicit Concepts)

Def. 14 Π = {π0, π1, ...., πn} (Policies)

Def. 15 π = {g,Nπ, Aπ,map(Nπ, Aπ)} (Policy)

Aπ ⊂ A,Nπ → Aπ (Aπ - Policy Actions)
Eπ ⊂ E,Eπ ⊂ Nπ (Eπ - Policy Events)

Def. 16 Nπ = {n0, n1, ...., nn} (Policy Conditions)

ASCENS 19



D3.1: First Report on WP3 (Final) November 15, 2011

Def. 17 n := bf(O) (Condition - Boolean Statement )

A policy has a goal (g) and policy conditions (Nπ) mapped to policy actions (Aπ), where the
evaluation of Nπ may imply the evaluation of actions (denoted with (Nπ → Aπ) (see Definition 15).
A condition is a Boolean function over ontology (see Definition 17). Note that the policy conditions
may be expressed with policy events. A goal is a desirable transition from a state to another state
(denoted with s ⇒ s′) (see Definition 18). The system may occupy a state (s) when the properties
of an object are updated (denoted with Tell � ob.P ), the properties of a set of objects get updated,
or some events have occurred in the system or in the environment (denoted with Tell � Es) (see
Definition 19). Note that Tell is a KB Operator involving knowledge inference (see Definition 46).

Def. 18 g = (s⇒ s′) (Goal)

Def. 19 s = 〈Tell � ob.P 〉|〈Tell � {ob0.P, ob1.P, ...., obn.P}〉|〈Tell � Es〉 (State )

Es ⊂ E (Es - State Events)

Def. 20 E = {e0, e1, ...., en} (Events)

Def. 21 A = {a0, a1, ...., an} (Actions)

A situation is expressed with a state (s), a history of actions (A←si ) (actions executed to get to state
s), actionsAsi that can be performed from state s and an optional history of eventsE←si that eventually
occurred to get to state s (see Definition 23).

Def. 22 Si = {si0, si1, ...., sin} (Situations)

Def. 23 si = {s,A←si , [E←si ], Asi} (Situation)

A←si ⊂ A ( A←si - Executed Actions)
Asi ⊂ A (Asi - Possible Actions)
E←si ⊂ E (Esi - Situation Events)

Def. 24 Gr = {gr0, gr1, ...., grn} (Groups)

Def. 25 gr = {Obgr, Rgr} (Group)

Obgr ⊂ Ob (Obgr - Group Objects, Ob - Objects)
Rgr ⊂ R (Rgr - Group Relations)

Def. 26 Ot = {ot0, ot1, ...., otn} (Object Trees )

Def. 27 ot = {ob, [Pb]} (Object Tree)

Def. 28 ob = {instof(c), P}, ob ⊂ Ob (Object)

Def. 29 Pb := {ob0, ob1, ...., obn}, P b ⊂ P (Object Properties)

Def. 30 R = {r0, r1, ...., rn} (Relations)

Def. 31 r = {ck, rn, [Z], cn}|{obk, rn, [Z], obn} (Relation, rn - name,Z - probability distribution)
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A group involves objects related to each other through a distinct set of relations (see Definition
25). Note that groups are explicit concept intended to (but not restricted) represent knowledge about
the SCE structure topology. Object trees (Ot) are conceptualization of how objects existing in the
world of interest are related to each other. The relationships are based on the principle that objects
have properties, where sometimes the value of a property is another object, which in turn also has
properties. Such properties are termed as object properties (Pb). An object tree consists of a root ob-
ject (ob) and an optional set of object properties (Pb) (see Definition 27). An object (ob) has a set of
properties (P ) including object properties (Pb) and is an instance of a concept (denoted as instof(c)
- see Definition 28). Relations connect two concepts or two objects and may have probability distri-
bution Z (e.g., over time). Probability distribution is provided to support probabilistic reasoning (see
Section 3.5.4). Note that we consider binary relations only.

ASCENS CONTEXTS

Def. 32 Cx = {cx0, cx1, ...., cxn} (Contexts)

Def. 33 cx = {At, [Icx]} (Context)

Def. 34 At = {at0, at1, ...., atn} (Ambient Trees)

Def. 35 at = {ct, Ca, [i]} (Ambient Tree)

ct ⊂ Ct (Concept Tree described by an ontology)
Ca ⊂ C (Ca - Ambient Concepts)
i ⊂ Icx (i-Ambient Tree Interpretation)

Def. 36 Icx = {i0, i1, ...., in} (Context Interpretations)

Contexts are intended to extract the relevant knowledge from an ontology. Moreover, contexts
carry interpretation for some of the meta-concepts (see Definition 6), which may lead to a new inter-
pretation of the descendant concepts (derived from a meta-concept - see Definition 8). We consider
a very broad notion of context, e.g., the environment in a fraction of time or a generic situation such
as currently-ongoing important system function. Thus, a context must emphasize the key concepts in
an ontology, which helps the inference mechanism narrow the domain knowledge (domain ontology)
by exploring the concept trees down to the emphasized key concepts only. Thus, depending on the
context, some low-level concepts might be subsumed by their upper-level parent concepts, just be-
cause the former are not relevant to that very context. For example, a robot wheel can be considered
as a thing or as an important part of the robot’s motion system. As a result, the context interpretation
of knowledge will help the system deal with “clean” knowledge and the reasoning shall be more ef-
ficient. A context (cx) consists of ambient trees (At) and optional context interpretations (Icx) (see
Definition 33). An ambient tree (at) consists of a real concept tree (ct) described by an ASCENS
ontology, ambient concepts (Ca) part of the concept tree and optional context interpretation (i).

ASCENS LOGICAL FRAMEWORK

Def. 37 Lf = {Fa,Rl, Ct} (ASCENS Logical Framework)

Def. 38 Fa = {fa0, fa1, ...., fan} (Facts)

Def. 39 fa = bf(O)→ T (Fact - True statement over ontology)
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Def. 40 Rl = {rl0, rl1, ...., rln} (Rules)

Def. 41 rl = if fa1 then fa2 else fa3 (Rule)

Def. 42 Ct = {ct0, ct1, ...., ctn} (Constraints)

Def. 43 ct = 〈if fa1 then MUST fa2〉 | 〈if fa1 then MUST ¬fa2〉 (Constraint)

fa1, fa2 ∈ Fa

An ASCENS Logical Framework (Lf ) is composed of facts (Fa), rules (Rl) and constraints (Ct)
(Definition 37). As shown in Definitions 38 through 43, the Lf ’s components are built with ontology
terms:

• facts - define true statements in the ontologies (O);

• rules - express knowledge such as: 1) if H than C; or 2) if H than C1 else C2; where H is
hypothesis of the rule and C is the conclusion;

• constraints - used to validate knowledge, i.e., to check its consistency. Can be positive or
negative and express knowledge of the form:

1) if A holds, so must B;

2) if A holds B must not.

Constraints might be also used as consistency rules helping the knowledge-processing engines
check the consistency of a KC (knowledge corpus).

ASCENS KNOWLEDGE BASE OPERATORS

Def. 44 Op = {Ask, Tell, Oop} (ASCENS Knowledge Base Operators)

Def. 45 Ask = retrieve(Kc)→ Ip�Kc (query knowledge base)

Def. 46 Tell = update(Kc)→ Ip�Kc (update knowledge base)

Def. 47 Oop = fo(Oi)→ Ip�Kc, Oi ⊂ O (Inter-ontology Operators )

ASCENS INFERENCE PRIMITIVES

Def. 48 Ip = {ip0, ip1, ...., ipn} (Inference Primitives)

Def. 49 ip = impl(FOL)|impl(FOPL)|impl(DL) (Inference Primitive)

The ASCENS Knowledge Base Operators (Op) can be grouped into three groups: Ask operators
(retrieve knowledge from a knowledge corpus Kc), Tell operators (update a Kc) and inter-ontology
operators (Oop) intended to work on one or more ontologies (see Definitions 44 through 47). Such
operators can be: merging, mapping, alignment, etc. Note that all the Knowledge Base Operators
(Op) may imply the use of inference primitives, i.e., new knowledge might be produced (inferred) and
stored in the KB (see Definitions 45 through 47).

The ASCENS Inference Primitives (Ip) are intended to specify algorithms for reasoning and
knowledge inference. The inference algorithms will be based on reasoning algorithms relying on
First Order Logic (FOL) [BL04] (and its extensions), First Order Probabilistic Logic (FOPL) [Hal90]
and on Description Logics (DL) [BN03]. FOPL increases the power of FOL by allowing us to assert
in a natural way “likely” features of objects and concepts via a probability distribution over the possi-
bilities that we envision. Having logics with semantics gives us a notion of deductive entailment. It is
our intention to address the following inference techniques inherent in FOL and DL:
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• induction (FOL) - induct new general knowledge from specific examples;

Example: Every robot I know has grippers. → Robots have grippers.

• deduction (FOL) - deduct new specific knowledge from more general one;

Example: Robots can move. MarXbot is a robot. → MarXbot can move.

• abduction (FOPL) - conclude new knowledge based on shared attributes.

Example: The object was pulled by a robot.

MarXbot has a gripper. → MarXbot pulled the object.

• subsumption (DL) - the act of subsuming a concept by another concept;

Example: Exploit the taxonomy structure of concepts that are defined in the ontology and com-
pute a new taxonomy for a set of concepts or derive matching statement from computed gener-
alization/specialization relationships between task and query.

• classification (DL) - assessing the category a given object belongs to;

• recognition (DL) - recognizing an object in the environment.

Note that uncertainty is an important issue in abductive reasoning (abduction), which cannot be
handled by the traditional FOL, but by FOPL. Abduction is inherently uncertain and may lead to
multiple plausible hypotheses, and to find the right one those hypotheses can be ranked by their plau-
sibility (probability) if the latter can be determined. For example, given rules A → B and C → B,
and fact B, both A and C are plausible hypotheses and the inference mechanism shall select the one
with higher probability.

3.4 Representing Knowledge in Robotic Systems with KnowLang

We have used an initial version of KnowLang to build a simple knowledge representation for the
marXbot robotics platform [BBR+11]. Currently, the marXbot robots are able to work in teams where
they coordinate based on simple interactions on group tasks. For example, a group of marXbot robots
may collectively move a relatively heavy object from point A to point B by using their grippers.

3.4.1 The marXbot Robot Ontologies

To tackle the marXbot knowledge representation problem, an initial structure for the marXbot Robot
Ontology (SC Ontology) has been developed. Figure 4 depicts a concept tree ct (see Definition
8) with a tree root tr “Thing”. The concept “Thing” is determined by the metaconcept Cm (see
Definition 6) “Robot Thing”, which carries information about the interpretation of the root concept
“Thing” such as “Thing is anything that can be related to a marXbot robot”. According to this concept
tree there are two categories of things in a marXbot robot: entities and virtual entities, where both are
used to organize the vocabulary in the internal robot domain. Note that all the explicit concepts
Ce (see Definition 13) are presented as concepts in this concept tree (qualified path: Thing →
V irtualEntity → Phenomenon), i.e., in this SC Ontology, the explicit concepts inherit (“�”) the
concepts “Phenomenon”, “Virtual Entity” and “Thing”. In addition to the marXbot SC Ontology, to
represent the knowledge in all necessary aspects, we have developed initial variants of the other three
ASCENS ontologies - SCE Ontology, Environment Ontology, and Situational Ontology (see Section
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Figure 4: The marXbot Robot SC Ontology: Robot Concept Tree

Figure 5: The marXbot Robot Environment Ontology: Environment Concept Tree

3.2). Figure 5 depicts a partial concept tree of the marXbot Robot Environment Ontology. This
ontology presents parameters and properties of the robot’s operational environment, e.g., external
systems (humans, other robots, etc.), concepts (velocity, event, signal, etc.), obstacles, etc. Due to
space limitations, the other ontologies with their concept and object trees are not presented here.
Figure 6 depicts a partial object tree ot (see Definition 27) of the marXbot Robot SC Ontology. As
shown, the Robot Object Tree shows the object properties of the marXbot Robot object. Note that
the marXbot Robot SC Ontology contains a few more concept and object trees, such as the Relations
Concept Tree not presented here, etc.

3.4.2 The marXbot Robot Contexts and Logical Framework

In specific situations, the robot’s inferential engine narrows the scope of knowledge in order to reason
more efficiently. This ability is supported by the KnowLang’s Context construct cx (see Definition
33). For the purpose of this case study, we have specified a few Contexts, e.g., a context corresponding
to the situation ”Robot cannot move”. This Context cx is specified with one single Ambient Tree as
following (for more information on the initial KnowLang syntax, please see [VHGN11]):
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Figure 6: The marXbot Robot SC Ontology: Robot Object Tree

CONTEXT name = "Robot cannot move" {
AMBIENT_TREE {

ONTOLOGY: Robot;
CONCEPT_TREE: Thing;
AMBIENT_CONCEPTS {Electronics, Software, Property}

}
}

This Context is applied automatically at runtime to narrow the scope of knowledge as shown in
Figure 7. Note that the ambient concepts define the ”depth” of the concept tree in that specific context,
i.e., all the concepts descending from those ambient concepts are generalized (or abstracted) by the
ambient concepts. For example, we do not deal with Shape, Color, or Measure anymore, but with
Property, because the latter is the ambient concept for the former.

When a robot ends up in such a situation, it should check for possible action determined by policies
(specified by one of the robot’s ontologies) (see Definition 15) or by rules (specified by the robots’
Logical Framework) (see Definition 41). For example, for the purpose of this case study, we have
specified two rules as part of the robot’s Logical Framework:

RULE {
IF "robot cannot move" THEN {

DO ACTION "check battery"
}

}
RULE {

IF "robot cannot move" AND "battery is charged" THEN {
DO ACTION "run scanner for obstacles on road"

}
}
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Figure 7: The marXbot Robot Environment Ontology: Narrowed Robot Concept Tree

3.5 Discussion

In comparison with other knowledge representation systems, KnowLang has increased expressive
power derived from its layered specification structure and knowledge representation features like:

• Domain ontologies - intended to provide domain concepts and the relationships between those
concepts to form the basic structure around which knowledge can be built. With constructs like
concept trees (see Definitions 8 through 12) and object trees (see Definitions 27 through 29),
the KnowLang ontologies establish taxonomies, vocabularies and domain terminology suitable
for DL-based reasoning.

• Meta-concepts - help ontologies be regarded from different context perspectives by establishing
different meanings to some of the key concepts. This is a very powerful construct, which allows
defining a sort of converse of a concept and its derived concept tree depending on the current
context.

• Explicit concepts - allow for distributed reasoning (see Section 3.5.4) and quantification over
actions, events, policies, situations and groups.

• Relations - the distinct specification layer for relations allow for description of complex general
and individual relations applicable to concepts and objects, rather than isolated assertions.

• Autonomous behavior - there are specification constructs dedicated to the autonomous behavior
of the SCs composing an ASCENS system. Such constructs are policies, actions, events and
situations.

• Quantification - it is possible to quantify over explicit concepts, concepts and objects.

• Negation - KnowLang allows negation, which is a major limitation in systems based on Horn
clauses, e.g., Prolog.

• Contexts and ambient trees - help to specify what part of the entire knowledge is relevant to a
particular situation, which helps to “clean” the knowledge for reasoning.
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• Logical framework - provides a distinct set of facts, rules and constraints establishing knowledge
that complements the ontologies. This knowledge is expressed in FOL and FOPL and is the
basis for some of the reasoning algorithms specified at the level of inference primitives (see
Definition 49). The presence of both ontologies and logical framework helps the system do
hybrid reasoning (see Section 3.5.4), thus making the overall reasoning process more efficient.

• Inference primitives and KB operators - provide mechanisms for knowledge inference and
knowledge retrieval and update.

The following subsections discuss important questions and challenges related to the KnowLang’s fea-
tures.

3.5.1 Explicit Knowledge

In our approach, different pieces of knowledge shall be presented by different formalism constructs.
Ontology, facts, rules and constraints are intended to present distinct pieces of knowledge that are
worth being differently represented. Note that an important distinction is between ontological, factual
and rule-based knowledge. Whereas the first is related to the general categories (presented as concepts)
and important objects in the domain of interest, the second makes assertions about some specific
concepts and objects. This distinction is essential for reasoning based on DL. In addition, the rule-
based knowledge is part of the so-called explicit knowledge suitable for FOL-based reasoning. The
rules may imply special relations between the concepts and objects or impose a special semantics for
such relations.

The ASCENS platform does not necessarily emphasize knowledge-centered systems. This means
that software engineers using the ASCENS development platform may encode a big part of the “a
priory” knowledge (knowledge given to the system before the latter actually runs) in the implemented
classes and routines. In such a case, the knowledge-represented pieces of knowledge (e.g., concepts,
relations, rules, etc.) may complement the knowledge codified into implemented program classes and
routines. For example, rules could be based on SC’s classes and methods and a substantial concern
about the rules organization is how to relate the knowledge expressed with rules to implemented meth-
ods and functions. A possible solution is to map concepts and objects to program classes and objects
respectively and design rules working on the input (parameters, pre-conditions) and output (results,
post-conditions) of implemented methods. Additional explicit knowledge comes in the form of con-
straints (see Definition 43), which are intended to provide special rules. There could be constraints
for knowledge acquisition, knowledge retrieval, knowledge update and knowledge inference.

3.5.2 Inferred Implicit Knowledge

Explicit knowledge can be used by the system to infer implicit knowledge. The process is based on ex-
tracting the knowledge explicitly represented and acquiring the implicit knowledge through augmen-
tation and inference techniques. As mentioned in Section 3.3, the Ask and Tell groups of operators
(see Definitions 45 and 46) are intended to query and update the KCs, which may imply inference of
new knowledge. One of the challenges we need to overcome is how the system shall differ between the
knowledge that is inferred and such that is explicitly stored, e.g., inferred facts versus explicit facts.
Here, one of the important questions is “Could knowledge that can be inferred also be available as
explicit facts?”. Due to its self-learning capabilities, the system shall be able to register new concepts,
objects, relations, facts, etc. Therefore, the question is not whether the system needs to store inferred
knowledge, but rather how to decide on thresholds determining what part of the inferred knowledge
should be stored and when. Note that storing (and thus making explicit) all the inferred knowledge is
not a solution, because this will introduce huge redundancy and eventually inconsistency, both having
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a great impact on reasoning. Our approach to discovering such inferred-explicit knowledge thresholds
is to determine: 1) when an inferred piece of knowledge (a concept, an object, a relation, a fact, etc.)
called knowledge k is used as a basis to infer a new piece of knowledge called knowledge k′; and 2)
check whether knowledge k′ is not further used to infer knowledge k (cycling inference). Thus, the
inferred knowledge should be only one level deep, i.e., a piece of inferred knowledge should be only
based on explicit concepts, objects, etc.

3.5.3 Knowledge Consistency

It is important to ensure knowledge consistency. Consistency shall be automatically ensured at runtime
to prevent:

• conflicts between rules, between facts, between relations and between constraints, e.g., two
rules have the same conditions but different results;

• redundancy in the ontologies and the logical framework, e.g., two rules are applicable to identi-
cal situations and conclude the same results;

• rule (constraint) subsumption when two rules conclude the same results, but the first is more
restrictive than the second one and whenever the first one succeeds the second one succeeds too.

Constraints may provide for consistency enforcement. For example, a constraint could be one prevent-
ing the system from inferring knowledge from inferred knowledge. Other generic constraints can deal
with cycling relations and cycling inference. A cycling inference exists when a piece of knowledge is
used to infer another piece of knowledge that is consecutively used to infer the first one. Constraints
can provide solution to the problem in the form of:

• stop after fixed number of iterations;

• stop when there are no changes in the knowledge.

3.5.4 Reasoning (Inference)

The ASCENS’s inference mechanism shall comprise a few high-order inference engines based on
FOL and DLs and driven by the inference primitives defined by KnowLang. KnowLang will pro-
vide a predefined set of such primitives implementing reasoning based on the inference techniques:
induction, deduction, abduction, subsumption, classification and recognition (see Section 3.3). In ad-
dition, developers will define their own inference primitives. Supplying the knowledge and reasoning
mechanisms to infer the correct decision creates several research challenges:

Hybrid reasoning. The ASCENS knowledge model is highly expressive. The multi-layer struc-
ture of knowledge representation together with the multiple inference primitives emphasize hybrid
reasoning, i.e., different inferential engines should be used, and their results should be eventually
“fused” together.

Distributed reasoning. The SCs (service components) forming an ASCENS system shall be able
to reason on their own and share knowledge with other SCs. Common vocabulary formed by the
explicit concepts (see Section 3.3) ensures the common interpretation of the shared knowledge.

Reasoning at the conceptual level. Different rules will be used to define links (e.g., hierarchies)
within the different concept trees presenting different categories of concepts (e.g., entities, functions,
etc.). Correspondingly, different deductions should hold for different categories.

Reasoning over “clean” knowledge. For efficient reasoning, it should be possible to reason by
emphasizing on the relevant knowledge and ignore selected parts of the KB. In our approach, contexts
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(see Definition 33) help to retrieve the context-relevant knowledge and help do deductive reasoning,
which would not be otherwise highlighted. Contexts via their ambient concept trees provide a sort of a
condensed and explicit/symbolic representation of the world. This representation is cleaned from the
overwhelming information that is non-relevant to the context and thus, it provides an efficient model
of the world to reason about.

Heuristic reasoning about potential correlations. Groups of concepts or attributes whose names
(structures) have terms (components) in common should be suggested as candidates for explicit rela-
tionships between them.

Probabilistic reasoning. To allow for probabilistic reasoning, we need to construct a sort of vari-
ety model per ontology consisting of a set of variables and a prior probability distribution. To support
that, KnowLang allows for the specification of probability distribution for the relations between con-
cepts and objects (see Definition 31). The probability distributions might be associated with time or
property values, the properties of the related concepts (or objects) might take. Thus, by specifying re-
lations with probability distributions we actually specify Bayesian networks connecting the concepts
and objects of that ontology.

3.6 KnowLang-SCEL and KnowLang-SOTA Relationships

KnowLang is going to be integrated in SCEL, the Service Component Ensembles Language tackled by
WP1. Ideally, KnowLang will enrich SCEL with a formal notation, mechanisms and tools dedicated
to knowledge representation in ASCENS systems. For compatibility reasons, KnowLang must cope
with the SCEL constructs at two levels:

1. The KB Operators, classified as ASK and TELL, should be compatible with the SCEL operators
for reading from and writing to the SCEL tuple space. Note that AKB is going to be stored
in a SCEL tuple space, where the physical location of the possibly distributed data will be
transparent and access to this data will be abstracted via a set of predefined input/output SCEL
operators.

2. The domain ontologies specified with KnowLang must incorporate some parts of the SCEL
description of the ASCENS system under development. This will help the developers map
concepts and objects specified with KnowLang to program structures specified with SCEL.
Recall that parts of the so-called “a priory” knowledge could be encoded in the implementation
(see Section 3.5.1).

Moreover, KnowLang will be used to model situations and self-adaptation policies determined with
SOTA, the State Of The Affairs framework tackled by WP4. SOTA can be used to produce a set of
requirements and guidelines for knowledge modeling and representation, which will be then specified
with KnowLang.

4 Summary and Future Goals

Knowledge representation is a subject of interest for many research fields. Some of these fields are on-
tologies, intelligent agents, autonomic computing, pattern recognition, knowledge processing, knowl-
edge discovery and data mining, self-awareness, etc. Conceptually, these research fields recognize that
a key success factor for an intelligent system is to employ its knowledge to become an aware system.
Such a system must be able to sense and analyze its system components and the environment where it
operates.
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This document has presented our state-of-the-art vision and initial research results on knowledge
representation and awareness in ASCENS (Autonomic Service-Component ENSembles). Such sys-
tems need to be developed with initial knowledge and learning capabilities based on knowledge pro-
cessing and awareness. It is very important how the system knowledge is both structured and modeled
to provide essence of both self-awareness and context awareness. In our approach, we consider struc-
tured knowledge based on four knowledge models such as SC knowledge, SCE knowledge, SCE
environment knowledge and situational knowledge.

In the course of the first year of WP3, we started developing the KnowLang formal language for
knowledge representation in ASCENS systems. To provide comprehensive and powerful specification
formalism, we propose a special multi-tier specification model, allowing for knowledge representa-
tion at different depths of knowledge. The KnowLang specification model defines an AKB (ASCENS
Knowledge Base) as composed of special knowledge corpuses, knowledge-base operators and infer-
ence primitives. A knowledge corpus is built of a domain ontology, special knowledge-narrowing
contexts and a special logical framework providing facts, rules and constraints. The knowledge base
operators allow for knowledge retrieval, update and special inter-ontology operations. All these, may
rely on the inference primitives, and therefore new knowledge might be inferred. KnowLang is an ex-
tension of SCEL (Service Component Ensemble Language) and as such it must maintain compatibility
with the SCEL tuple space and its associated input/output operators. Moreover, to integrate encoded
knowledge in the AKB, developers should be able to map program’s constructs specified with SCEL
to concepts and objects specified with KnowLang.

Our plans for the second year of WP3 are mainly concerned with further development of Know-
Lang. As part of Task T3.1, we shall complete the formal notation and implement appropriate tools
for KnowLang, and develop high-level generic knowledge models for SCE systems. Task T3.2 will
continue with further implementation of the Reference Model for Self-awareness and Task T3.3 will
emphasize investigation of techniques for pattern recognition and data mining.
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